EVALUACIÓN EXPERIMENTAL DE UNA TURBINA EÓLICA AXIAL DE DOBLE ROTOR CONTRA-ROTATORIA PARA GENERACIÓN ELÉCTRICA DE CONSUMO DOMÉSTICO

TESIS
QUE PARA OBTENER EL GRADO DE
MAESTRO EN CIENCIAS EN INGENIERÍA MECÁNICA

PRESENTA
ING. RUSSBEL MOISÉS VELÁZQUEZ VELÁZQUEZ

DIRECTOR DE TESIS
M. EN C. GUILIBALDO TOLENTINO ESLAVA

CIUDAD DE MÉXICO
ENERO 2017
INSTITUTO POLITÉCNICO NACIONAL
SECRETARÍA DE INVESTIGACIÓN Y POSGRADO

ACTA DE REVISIÓN DE TESIS

En la Ciudad de México siendo las 13:00 horas del día 08 del mes de Diciembre del 2016 se reunieron los miembros de la Comisión Revisora de la Tesis, designada por el Colegio de Profesores de Estudios de Posgrado e Investigación de E.S.I.M.E. para examinar la tesis titulada:

"EVALUACIÓN EXPERIMENTAL DE UNA TURBINA EÓLICA AXIAL DE DOBLE ROTOR CONTRA-ROTATORIA PARA GENERACIÓN ELÉCTRICA DE CONSUMO DOMÉSTICO".

Presentada por el alumno:

VELÁZQUEZ
Apellido paterno

VELÁZQUEZ
Apellido materno

RUSSBEL MOISÉS
Nombre(s)

Con registro: 5141170

aspirante de:

MAESTRO EN CIENCIAS EN INGENIERÍA MECÁNICA

Después de intercambiar opiniones los miembros de la Comisión manifestaron SU APROBACIÓN DE LA TESIS, en virtud de que satisface los requisitos señalados por las disposiciones reglamentarias vigentes.

LA COMISIÓN REVISORA
Director(a) de tesis

M. EN C. GUILIBALDO TOLENTINO ESLAVA

Presidente

DR. MIGUEL TOLEDO VELÁZQUEZ
Tercer Vocal

M. EN C. JUAN ABUGABER FRANCIS

Segundo Vocal

M. EN C. RENÉ TOLENTINO ESLAVA
Secretario

DR. FLORENCIO SÁNCHEZ SILVA

PRESIDENTE DEL COLEGIO

DR. MIGUEL TOLEDO VELÁZQUEZ
CARTA CESIÓN DE DERECHOS

En la Ciudad de México, el día 16 de mes diciembre del año 2016, el (la) que suscribe Russbel Moisés Velázquez Velázquez alumno (a) del Programa de Maestría en Ciencias en Ingeniería Mecánica, con número de registro B141170, adscrito a la Sección de Estudios de Posgrado e Investigación, manifiesta que es el autor intelectual del presente trabajo de Tesis bajo la dirección del M. en C. Guillilaldo Tolentino Eslava y cede los derechos del trabajo titulado “Evaluación experimental de una turbina eólica axial de doble rotor contra-rotatoria para generación eléctrica de consumo doméstico” al Instituto Politécnico Nacional para su difusión, con fines académicos y de investigación.

Los usuarios de la información no deben reproducir el contenido textual, gráficas o datos del trabajo sin el permiso expreso del autor y/o director de trabajo. Este puede ser obtenido escribiendo a las siguientes direcciones: moisesvelazquez1990@gmail.com, gtolentino@ipn.mx. Si el permiso se otorga, el usuario deberá dar el agradecimiento correspondiente y citar la fuente del mismo.

Ing. Russbel Moisés Velázquez Velázquez
AGRADECIMIENTOS

Primeramente dar gracias a Dios por darme la vida, por permitirme llegar a esta etapa profesional, por sus bendiciones diarias y sobre todo porque de él emana toda ciencia y sabiduría a la cual podemos recurrir para lograr nuestras metas.

A mis padres, Sr. Teodomiro Velázquez y Sra. Elia Velázquez y a mi hermana Migdalia, gracias porque siempre han estado conmigo tanto en tiempo de abundancia como en tiempo de necesidad y por su apoyo incondicional.

A mi asesor M. en C. Guillibaldo Tolentino, por sus consejos, correcciones, y sobre todo por siempre encaminarme en mi desarrollo profesional para aportar lo mejor de mí.

A mis compañeros, por su apoyo, por competirte buenos momentos y que con el paso del tiempo se convirtieron en amigos.

Al Instituto Politécnico Nacional, por brindarme la oportunidad de continuar con mi educación profesional y así aportar al país todo mi entusiasmo para el desarrollo técnico que se necesita. Al CONACYT y BEIFI por el sustento económico.
ÍNDICE

RELACIÓN DE FIGURAS...iv
RELACIÓN DE TABLAS...viii
NOMENCLATURA...ix
RESUMEN..xi
ABSTRACT ..xii
INTRODUCCIÓN...xiii

CAPÍTULO I. FUNDAMENTOS DE LAS TURBINAS EÓLICAS DE EJE HORIZONTAL...... 1
1.1 DINÁMICA DE FLUIDOS..2
 1.1.1 CHORRO Y PERFILES DE VELOCIDAD..................................2
 1.1.2 CAPA LÍMITE ...3
 1.1.3 ESTELA ...5
 1.1.4 TURBULENCIA...6
 1.1.5 VÓRTICES Y CALLE DE VÓRTICES....................................7

1.2 FUNCIONAMIENTO DE LAS TURBINAS EÓLICAS DE EJE HORIZONTAL (UN ROTOR)........ 9
 1.2.1 PERFILES AERODINÁMICOS...9
 1.2.2 SUSTENTACIÓN...10
 1.2.3 ARRASTRE ...11
 1.2.4 RELACIÓN ENTRE SUSTENTACIÓN Y ARRASTRE EN LA PALA DE UNA TURBINA EÓLICA...13
 1.2.5 ACCIÓN DEL VIENTO SOBRE EL ROTOR DE UNA TURBINA EÓLICA ...15

1.3 ECUACIONES FUNDAMENTALES DE LAS TURBINAS EÓLICAS DE EJE HORIZONTAL...... 17
 1.3.1 POTENCIA MÁXIMA TEÓRICA, LÍMITE DE BETZ............................17
 1.3.2 COEFICIENTE DE POTENCIA DEL ROTOR19
 1.3.3 COEFICIENTE GLOBAL DE POTENCIA20

1.4 PARÁMETROS DE DESEMPEÑO DE LAS TURBINAS EÓLICAS (UN ROTOR) 21
 1.4.1 DIÁMETRO DEL ROTOR ...21
 1.4.2 POTENCIA ELÉCTRICA CON RESPECTO A LA VELOCIDAD DEL VIENTO 22
 1.4.3 SISTEMAS DE REGULACIÓN DE POTENCIA23

1.5 FUNCIONAMIENTO Y PARÁMETROS DE DESEMPEÑO DE LAS TURBINAS EÓLICAS DE EJE HORIZONTAL (DOBLE ROTOR)...24
 1.5.1 FUNCIONAMIENTO DE LAS TURBINAS EÓLICAS DE DOBLE ROTOR CONTRA- ROTATORIAS ...24
 1.5.2 PARÁMETROS DE DESEMPEÑO ..25

CAPÍTULO II. ESTADO DEL ARTE..27
CAPÍTULO III. METODOLOGÍA EXPERIMENTAL ..45
 3.1 DESCRIPCIÓN DE LA INSTALACIÓN EXPERIMENTAL46
 3.1.1 SECCIÓN DE PRESIÓN DEL TÚNEL DE VIENTO ...46
 3.1.2 SECCIÓN DE SUCCIÓN DEL TÚNEL DE VIENTO ...47
 3.1.3 INSTRUMENTACIÓN ...48
 3.2 DESCRIPCIÓN DE LA TURBINA EÓLICA ..53
 3.2.1 PALAS ...53
 3.2.2 GENERADOR ELÉCTRICO ...54
 3.2.3 TRANSMISIÓN ..56
 3.2.4 GÓNDOLA Y NARIZ ...56
 3.3 METODOLOGÍA EXPERIMENTAL ..58
 3.3.1 METODOLOGÍA PARA CARACTERIZAR LA SECCIÓN DE PRUEBAS DE PRESIÓN59
 3.3.2 METODOLOGÍA PARA CARACTERIZAR EL CHORRO DE LA SECCIÓN DE PRESIÓN61
 3.3.3 METODOLOGÍA PARA OBTENER EL CAMPO DE FLUJO EN LA ESTELA Y EL COEFICIENTE DE ARRASTRE DE LA GÓNDOLA ...62
 3.3.4 METODOLOGÍA PARA LA VISUALIZACIÓN DE FLUJO EN LA GÓNDOLA65
 3.3.5 METODOLOGÍA PARA EVALUAR LA TURBINA EÓLICA DE DOBLE ROTOR CONTRA-ROTATORIA ...68

CAPÍTULO IV. ANÁLISIS DE RESULTADOS ..72
 4.1 CARACTERIZACIÓN DE FLUJO EN LA SECCIÓN DE PRESIÓN73
 4.2 CARACTERIZACIÓN DEL CHORRO DE LA SECCIÓN DE PRESIÓN76
 4.3 PERFIL DE VELOCIDAD E INTENSIDAD DE TURBULENCIA Y COEFICIENTE DE ARRASTRE EN LA GÓNDOLA ..77
 4.4 VISUALIZACIÓN DE FLUJO EN LA GÓNDOLA ...81
 4.5 PERFIL DE VELOCIDAD EN LA TURBINA EÓLICA ..84
 4.6 POTENCIA ELÉCTRICA Y COEFICIENTE GLOBAL DE POTENCIA86

CONCLUSIONES ..90
RECOMENDACIONES ..91
REFERENCIAS ...92
APÉNDICES Y ANEXOS ...95
 APÉNDICE A. PROCEDIMIENTO DE CALIBRACIÓN DEL ANEMÓMETRO DE HILO CALIENTE INDOOR ...96
 APÉNDICE B. DATOS DE CALIBRACIÓN DE LA SONDA DE HILO CALIENTE99
 APÉNDICE C. RESULTADOS DE LAS MEDICIONES DE VELOCIDAD EN LA TURBINA EÓLICA ...100
 ANEXO 1. CURVAS POLARES Y COORDENADAS DE LOS PERFILS AERODINÁMICOS NACA 2412 Y NREL S822 ...101
RELACIÓN DE FIGURAS

<table>
<thead>
<tr>
<th>Número</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Desarrollo del perfil de velocidad de un chorro [8].</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Desplazamiento de un fluido a través de dos paredes [9].</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Formación y desarrollo de la capa límite sobre una placa plana [9].</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Desarrollo y separación de flujo en una superficie curva [9].</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Flujo alrededor en una esfera [9].</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>Formación de vórtices en una estela [11].</td>
<td>8</td>
</tr>
<tr>
<td>1.7</td>
<td>Calle de vórtices en una estela [12].</td>
<td>8</td>
</tr>
<tr>
<td>1.8</td>
<td>Nomenclatura de un perfil aerodinámico [13].</td>
<td>10</td>
</tr>
<tr>
<td>1.9</td>
<td>Fuerza de sustentación en un perfil aerodinámico [14].</td>
<td>11</td>
</tr>
<tr>
<td>1.10</td>
<td>Fuerza de arrastre y sus componentes en un perfil aerodinámico [14].</td>
<td>12</td>
</tr>
<tr>
<td>1.11</td>
<td>Flujo de aire en la superficie de la pala de una turbina eólica [15].</td>
<td>13</td>
</tr>
<tr>
<td>1.12</td>
<td>Efectos de la fuerza de sustentación y arrastre en el perfil de la pala [15].</td>
<td>13</td>
</tr>
<tr>
<td>1.13</td>
<td>Curva polar de coeficientes C_L y C_D con respecto al ángulo de ataque [15].</td>
<td>14</td>
</tr>
<tr>
<td>1.14</td>
<td>Diagrama del rotor de una turbina eólica [16].</td>
<td>16</td>
</tr>
<tr>
<td>1.15</td>
<td>Fuerzas de arrastre y sustentación sobre la pala de una turbina eólica [16].</td>
<td>16</td>
</tr>
<tr>
<td>1.16</td>
<td>Flujo de aire circulando a través del área barrida por el rotor [17].</td>
<td>18</td>
</tr>
<tr>
<td>1.17</td>
<td>Variación del coeficiente de potencia (C_P) con respecto a la velocidad específica (λ) para distintos tipos de rotores eólicos [15].</td>
<td>19</td>
</tr>
<tr>
<td>1.18</td>
<td>Incremento de la potencia nominal con respecto al diámetro del rotor [15].</td>
<td>21</td>
</tr>
<tr>
<td>1.19</td>
<td>Curva de potencia de una turbina eólica de eje horizontal de potencia nominal de 1 MW [15].</td>
<td>22</td>
</tr>
<tr>
<td>1.20</td>
<td>Curva de potencia de una turbina eólica con regulación activa y pasiva [16]</td>
<td>23</td>
</tr>
<tr>
<td>1.21</td>
<td>Configuraciones de rotores para turbinas eólicas de doble rotor [18].</td>
<td>24</td>
</tr>
<tr>
<td>1.22</td>
<td>Comportamiento del flujo entre rotores de una turbina eólica de doble rotor [18].</td>
<td>25</td>
</tr>
<tr>
<td>1.23</td>
<td>Efectos de la relación de diámetros en la eficiencia de la turbina de doble rotor [18].</td>
<td>26</td>
</tr>
<tr>
<td>1.24</td>
<td>Efecto de la distancia axial entre rotores en el coeficiente de potencia [18].</td>
<td>26</td>
</tr>
<tr>
<td>2.1</td>
<td>Distribución de velocidades en los puntos de medición a diferentes frecuencias [19].</td>
<td>28</td>
</tr>
<tr>
<td>2.2</td>
<td>Curvas de potencia a diferentes velocidades del viento y No. De Reynolds [20].</td>
<td>29</td>
</tr>
<tr>
<td>2.3</td>
<td>Mallas utilizadas para la intensidad de turbulencia [20].</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Efectos en la potencia con la variación de la intensidad de turbulencia [20].</td>
<td>30</td>
</tr>
</tbody>
</table>
CONTINUACIÓN DE RELACIÓN DE FIGURAS

<table>
<thead>
<tr>
<th>Número</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Visualización de flujo en la turbina eólica mediante generador de humo [20].</td>
<td>31</td>
</tr>
<tr>
<td>2.6</td>
<td>Efectos del tamaño del rotor corriente abajo en el incremento de la potencia [21].</td>
<td>32</td>
</tr>
<tr>
<td>2.7</td>
<td>Efectos de la distancia entre rotores en la potencia de la turbina [22].</td>
<td>32</td>
</tr>
<tr>
<td>2.8</td>
<td>Puntos de medición en el rotor de la turbina eólica de doble rotor [23].</td>
<td>34</td>
</tr>
<tr>
<td>2.9</td>
<td>Desarrollo de los perfiles de velocidad en una turbina eólica de doble rotor [23].</td>
<td>35</td>
</tr>
<tr>
<td>2.10</td>
<td>Efectos del diámetro del rotor corriente abajo en la potencia [23].</td>
<td>35</td>
</tr>
<tr>
<td>2.11</td>
<td>Efecto de la distancia entre rotores en la potencia de la turbina [23].</td>
<td>36</td>
</tr>
<tr>
<td>2.12</td>
<td>Relación de la potencia del rotor corriente abajo con el rotor corriente arriba [24].</td>
<td>37</td>
</tr>
<tr>
<td>2.13</td>
<td>Curva de potencia de la turbina eólica de doble rotor contra-rotatoria [25].</td>
<td>38</td>
</tr>
<tr>
<td>2.14</td>
<td>Resultados obtenidos a) Coeficiente de arrastre y b) coeficiente de potencia en la turbina eólica de doble rotor [26].</td>
<td>38</td>
</tr>
<tr>
<td>2.15</td>
<td>Comparación de las curvas de potencia de una turbina de doble rotor y de un rotor [26].</td>
<td>39</td>
</tr>
<tr>
<td>2.16</td>
<td>Geometría de las narices del cuerpo para aplicaciones navales [27].</td>
<td>40</td>
</tr>
<tr>
<td>2.17</td>
<td>Diagrama de la instalación para la visualización [27].</td>
<td>40</td>
</tr>
<tr>
<td>2.18</td>
<td>Vórtices en la superficie del cuerpo en diferentes planos de visualización [27].</td>
<td>41</td>
</tr>
<tr>
<td>2.19</td>
<td>Turbina eólica de doble rotor contra-rotatoria patentada por Appa [28].</td>
<td>41</td>
</tr>
<tr>
<td>2.20</td>
<td>Líneas de corriente alrededor de los dos rotores [28].</td>
<td>42</td>
</tr>
<tr>
<td>2.21</td>
<td>Diagrama de la turbina eólica patentada por Jeumont Industrie [29].</td>
<td>43</td>
</tr>
<tr>
<td>2.22</td>
<td>Curvas de potencia de la turbina eólica de doble rotor y un rotor [29].</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>Diagrama de la sección de presión del túnel de viento.</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>Motor eléctrico, variador de velocidad y ventilado centrífugo.</td>
<td>47</td>
</tr>
<tr>
<td>3.3</td>
<td>Diagrama de la sección de pruebas de succión del túnel de viento.</td>
<td>47</td>
</tr>
<tr>
<td>3.4</td>
<td>Estación meteorológica [32].</td>
<td>48</td>
</tr>
<tr>
<td>3.5</td>
<td>Anemómetro de hilo caliente industrial marca EXTECH®.</td>
<td>49</td>
</tr>
<tr>
<td>3.6</td>
<td>Sistema de anemometría de hilo caliente [34].</td>
<td>50</td>
</tr>
<tr>
<td>3.7</td>
<td>Sistema de auto calibración [34].</td>
<td>51</td>
</tr>
<tr>
<td>3.8</td>
<td>Unidad de posicionamiento.</td>
<td>52</td>
</tr>
<tr>
<td>3.9</td>
<td>Sonda 55P11 [34].</td>
<td>52</td>
</tr>
<tr>
<td>3.10</td>
<td>Turbina eólica de doble rotor contra-rotatoria [50].</td>
<td>53</td>
</tr>
<tr>
<td>Número</td>
<td>Descripción</td>
<td>Página</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>3.11</td>
<td>Geometría del perfil aerodinámico NACA 2412 [36].</td>
<td>54</td>
</tr>
<tr>
<td>3.12</td>
<td>Geometría del perfil aerodinámico NREL S822 [37].</td>
<td>54</td>
</tr>
<tr>
<td>3.13</td>
<td>Generador eléctrico marca BOSCH®.</td>
<td>55</td>
</tr>
<tr>
<td>3.14</td>
<td>Diagrama del acoplamiento de los rotores al generador eléctrico.</td>
<td>56</td>
</tr>
<tr>
<td>3.15</td>
<td>Góndola de la turbina eólica de doble rotor contra-rotatoria.</td>
<td>57</td>
</tr>
<tr>
<td>3.16</td>
<td>Narices de la turbina eólica de doble rotor contra-rotatoria.</td>
<td>57</td>
</tr>
<tr>
<td>3.17</td>
<td>Diagrama de flujo para la metodología general para la caracterización de la instalación y evaluación de la turbina eólica.</td>
<td>58</td>
</tr>
<tr>
<td>3.18</td>
<td>Diagrama de flujo para la caracterización de la sección de pruebas de presión del túnel de viento.</td>
<td>59</td>
</tr>
<tr>
<td>3.19</td>
<td>Puntos de medición en la sección de pruebas de presión.</td>
<td>60</td>
</tr>
<tr>
<td>3.20</td>
<td>Plano de medición en la sección de pruebas de presión.</td>
<td>60</td>
</tr>
<tr>
<td>3.21</td>
<td>Diagrama de flujo para caracterizar el chorro de la sección de presión.</td>
<td>61</td>
</tr>
<tr>
<td>3.22</td>
<td>Plano de medición en el chorro de la sección de presión.</td>
<td>62</td>
</tr>
<tr>
<td>3.23</td>
<td>Diagrama de flujo para obtener el campo de flujo de la estela y el coeficiente de arrastre de la góndola.</td>
<td>63</td>
</tr>
<tr>
<td>3.24</td>
<td>Instalación de la góndola en la sección de pruebas de succión.</td>
<td>64</td>
</tr>
<tr>
<td>3.25</td>
<td>Configuraciones de la góndola de la turbina eólica.</td>
<td>65</td>
</tr>
<tr>
<td>3.26</td>
<td>Diagrama de flujo para la visualización de flujo en la góndola.</td>
<td>65</td>
</tr>
<tr>
<td>3.27</td>
<td>Generador de humo blanco.</td>
<td>66</td>
</tr>
<tr>
<td>3.28</td>
<td>Flujo de humo atravesando la góndola.</td>
<td>66</td>
</tr>
<tr>
<td>3.29</td>
<td>Sistema de iluminación laser.</td>
<td>67</td>
</tr>
<tr>
<td>3.30</td>
<td>Plano de iluminación axial para la visualización.</td>
<td>67</td>
</tr>
<tr>
<td>3.31</td>
<td>Diagrama de flujo para evaluar la turbina eólica de doble rotor contra-rotatoria.</td>
<td>69</td>
</tr>
<tr>
<td>3.32</td>
<td>Diagrama esquemático del sistema de cargas dinámicas.</td>
<td>70</td>
</tr>
<tr>
<td>3.33</td>
<td>Planos y puntos de medición de velocidad en la turbina eólica.</td>
<td>71</td>
</tr>
<tr>
<td>4.1</td>
<td>Perfiles de velocidad para las velocidades de operación; 3 m/s, 12 m/s y 20 m/s</td>
<td>76</td>
</tr>
<tr>
<td>4.2</td>
<td>Perfiles de velocidad en la estela de la góndola a las tres velocidades de operación.</td>
<td>78</td>
</tr>
<tr>
<td>4.3</td>
<td>Perfiles de turbulencia a 3 m/s.</td>
<td>79</td>
</tr>
<tr>
<td>4.4</td>
<td>Perfiles de turbulencia a 12 m/s.</td>
<td>80</td>
</tr>
<tr>
<td>4.5</td>
<td>Perfiles de turbulencia a 20 m/s.</td>
<td>80</td>
</tr>
<tr>
<td>4.6</td>
<td>Coeficiente de arrastre a diferentes No. De Reynolds</td>
<td>81</td>
</tr>
<tr>
<td>4.7</td>
<td>Visualización flujo a 0.2 m/s y un Re=4491 para la configuración 1 de la góndola</td>
<td>82</td>
</tr>
<tr>
<td>4.8</td>
<td>Visualización de flujo a 0.2 m/s y un Re=4550 para la configuración 2 de la góndola</td>
<td>83</td>
</tr>
<tr>
<td>4.9</td>
<td>Perfiles de velocidad en la turbina eólica a 7 m/s</td>
<td>84</td>
</tr>
<tr>
<td>4.10</td>
<td>Perfiles de velocidad en la turbina eólica a 14 m/s</td>
<td>85</td>
</tr>
<tr>
<td>4.11</td>
<td>Curva de potencia de la turbina eólica con un rotor</td>
<td>87</td>
</tr>
<tr>
<td>4.12</td>
<td>Curvas de potencia de la turbina eólica con doble rotor y con un rotor</td>
<td>88</td>
</tr>
<tr>
<td>4.13</td>
<td>Coeficiente global de potencia de la turbina eólica de doble rotor y de un rotor</td>
<td>90</td>
</tr>
</tbody>
</table>
RELACIÓN DE TABLAS

<table>
<thead>
<tr>
<th>Número</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparación de la potencia de la turbina eólica contra-rotatoria y con un rotor [21].</td>
<td>31</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparación de la eficiencia obtenida por cada rotor y con doble rotor [22].</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>Características de la estación meteorológica [32].</td>
<td>48</td>
</tr>
<tr>
<td>3.2</td>
<td>Especificaciones técnicas del anemómetro térmico marca EXTECH® [33].</td>
<td>49</td>
</tr>
<tr>
<td>3.3</td>
<td>Descripción de las toberas utilizadas por la unidad de calibración [34].</td>
<td>51</td>
</tr>
<tr>
<td>3.4</td>
<td>Datos eléctricos del generador [38].</td>
<td>55</td>
</tr>
<tr>
<td>4.1</td>
<td>Relación de la frecuencia con la velocidad del viento en la sección de pruebas de presión.</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>Velocidades promedio e intensidad de turbulencia para la velocidad de arranque.</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>Velocidades promedio e intensidad de turbulencia para la velocidad nominal.</td>
<td>74</td>
</tr>
<tr>
<td>4.4</td>
<td>Velocidades promedio e intensidad de turbulencia para la velocidad de desconexión.</td>
<td>75</td>
</tr>
<tr>
<td>4.5</td>
<td>Evaluación de la turbina eólica con un rotor.</td>
<td>86</td>
</tr>
<tr>
<td>4.6</td>
<td>Evaluación de la turbina eólica de doble rotor.</td>
<td>87</td>
</tr>
<tr>
<td>4.7</td>
<td>Incremento de potencia con doble rotor contra-rotatorio.</td>
<td>89</td>
</tr>
</tbody>
</table>
NOMENCLATURA

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descripción</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Área</td>
<td>m2</td>
</tr>
<tr>
<td>C_d</td>
<td>Coeficiente de arrastre</td>
<td>---</td>
</tr>
<tr>
<td>C_e</td>
<td>Coeficiente global de potencia</td>
<td>---</td>
</tr>
<tr>
<td>C_l</td>
<td>Coeficiente de sustentación</td>
<td>---</td>
</tr>
<tr>
<td>C_p</td>
<td>Coeficiente de potencia del rotor</td>
<td>---</td>
</tr>
<tr>
<td>D</td>
<td>Diámetro</td>
<td>m</td>
</tr>
<tr>
<td>F_a</td>
<td>Fuerza axial</td>
<td>N</td>
</tr>
<tr>
<td>F_d</td>
<td>Fuerza de arrastre</td>
<td>N</td>
</tr>
<tr>
<td>F_s</td>
<td>Fuerza de sustentación</td>
<td>N</td>
</tr>
<tr>
<td>F_m</td>
<td>Fuerza motriz</td>
<td>N</td>
</tr>
<tr>
<td>H</td>
<td>Humedad Relativa</td>
<td>%</td>
</tr>
<tr>
<td>I</td>
<td>Corriente eléctrica</td>
<td>A</td>
</tr>
<tr>
<td>M</td>
<td>Par motor</td>
<td>N·m</td>
</tr>
<tr>
<td>m</td>
<td>Masa</td>
<td>kg</td>
</tr>
<tr>
<td>P_{atm}</td>
<td>Presión atmosférica</td>
<td>Pa</td>
</tr>
<tr>
<td>P_d</td>
<td>Potencia disponible del viento</td>
<td>W</td>
</tr>
<tr>
<td>P_e</td>
<td>Potencia eléctrica</td>
<td>W</td>
</tr>
<tr>
<td>R</td>
<td>Radio del rotor</td>
<td>m</td>
</tr>
<tr>
<td>Re</td>
<td>Número de Reynolds</td>
<td>---</td>
</tr>
<tr>
<td>T</td>
<td>Temperatura</td>
<td>°C</td>
</tr>
<tr>
<td>Tu</td>
<td>Intensidad de turbulencia</td>
<td>%</td>
</tr>
<tr>
<td>U</td>
<td>Velocidad del viento</td>
<td>m/s</td>
</tr>
<tr>
<td>u_{rms}</td>
<td>Velocidad media cuadrática</td>
<td>m/s</td>
</tr>
<tr>
<td>V</td>
<td>Tensión eléctrica</td>
<td>V</td>
</tr>
<tr>
<td>α</td>
<td>Ángulo de ataque</td>
<td>°</td>
</tr>
<tr>
<td>β</td>
<td>Ángulo de paso</td>
<td>°</td>
</tr>
<tr>
<td>δ</td>
<td>Espesor de la capa límite</td>
<td>mm</td>
</tr>
<tr>
<td>η</td>
<td>Eficiencia</td>
<td>%</td>
</tr>
<tr>
<td>η_g</td>
<td>Eficiencia del generador eléctrico</td>
<td>%</td>
</tr>
<tr>
<td>ρ</td>
<td>Densidad del fluido</td>
<td>kg/m3</td>
</tr>
<tr>
<td>λ</td>
<td>Velocidad específica del rotor de palas</td>
<td>---</td>
</tr>
<tr>
<td>μ</td>
<td>Viscosidad dinámica</td>
<td>N·s/m2</td>
</tr>
</tbody>
</table>
CONTINUACIÓN DE NOMENCLATURA

<table>
<thead>
<tr>
<th>símbolo</th>
<th>Significado</th>
<th>Símbolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ</td>
<td>Esfuerzo de corte</td>
<td>N/m²</td>
</tr>
<tr>
<td>ϕ</td>
<td>Flujo magnético</td>
<td>Wb</td>
</tr>
<tr>
<td>ω</td>
<td>Velocidad angular</td>
<td>rad/s</td>
</tr>
<tr>
<td>ϑ</td>
<td>Ángulo de diseño de la</td>
<td>°</td>
</tr>
<tr>
<td></td>
<td>pala</td>
<td></td>
</tr>
</tbody>
</table>
RESUMEN

Se realizó un estudio experimental para obtener la potencia eléctrica y la eficiencia de una turbina eólica de doble rotor contra-rotatoria en un intervalo de velocidad del viento de 5 m/s a 20 m/s, además se evaluó aerodinámicamente la góndola de turbina eólica y se visualizó el flujo con las dos configuraciones de narices. Esto para tener un panorama del funcionamiento utilizando doble rotor y compararlo con las turbinas eólicas convencionales de un solo rotor y pueda considerarse con una opción viable para la generación eléctrica para aplicaciones domésticas.

Las pruebas experimentales fueron realizadas en el chorro y en la sección de pruebas de presión del túnel de viento del LABINTHAP®. La caracterización y visualización de flujo de la góndola (en sus dos configuraciones) se realizaron en la sección de pruebas de succión y se midieron las velocidades del flujo con un anemómetro de hilo caliente de investigación. Para calcular la potencia eléctrica del generador se utilizó un sistema de cargas dinámicas para variar las cargas eléctricas y se midió la tensión de generación y la corriente en la carga para cada intervalo de velocidad del viento.

Con la caracterización de la instalación se obtuvo las condiciones en que se encuentra el flujo dentro de la sección de pruebas de presión y en el chorro. En la caracterización de la góndola se obtuvo los perfiles de velocidad y de turbulencia, el coeficiente de arrastre y con la visualización se obtuvieron fotográficamente el desarrollo de los vórtices en la estela. Además con las mediciones de velocidad hechas en los planos de medición en la turbina eólica se trazaron los perfiles de velocidad. Con las mediciones de tensión en el generador eléctrico y la corriente en las cargas se obtuvo la curva de potencia y el coeficiente global de potencia.

Los resultados mostraron que la configuración 2 fue la que tiene menor coeficiente de arrastre, con un $C_d=0.237$ en promedio a comparación de la configuración 1 que presentó un $C_d=0.275$ y la turbina eólica de doble rotor contra-rotatoria generó más potencia eléctrica y fue más eficiente en un 34% en el mismo intervalo de velocidades que la turbina eólica convencional. Esto indica que las turbinas de doble rotor contra-rotatoria pueden considerarse una opción a las turbinas eólicas convencionales para generación eléctrica para consumo doméstico, ya que son más eficientes a las mismas condiciones del viento.
ABSTRACT

An experimental study was carried out to obtain the electrical power and efficiency of a counter-rotating wind turbine at a wind speed range of 5 m/s to 20 m/s. The wind turbine nacelle was also evaluated aerodynamically. The flow with the two nose configurations was visualized. This is to have a picture of the operation using double rotor and compare it with the conventional wind turbines of a single rotor and can be considered with a viable option for the electrical generation for domestic applications.

The experimental tests were performed in the jet and in the pressure test section of the LABINTHAP wind tunnel. The nacelle flow characterization and visualization (in its two configurations) were performed in the suction testing section and the flow velocities were measured with a research hot wire anemometer. To calculate the electric power of the generator a system of dynamic loads was used to vary the electric load and the generation voltage and the current in the load were measured for each wind speed range.

With the characterization of the installation, the conditions under which the flow was found inside the pressure test section and in the jet were obtained. In the characterization of the nacelle, the velocity and turbulence profiles, the drag coefficient and the photographic data were obtained by the development of the vortices in the wake. In addition, with the speed measurements made on the measurement planes in the wind turbine, the velocity profiles were drawn. With the voltage measurements in the electric generator and the current in the loads the power curve and the overall power coefficient were obtained.

The results showed that the configuration 2 had the lowest drag coefficient, with a $C_D = 0.237$ in average compared to the configuration 1 that presented a $C_D = 0.275$ and the wind turbine of double counter-rotating rotor generated more electric power and was more efficient by 34% in the same range of speeds as the conventional wind turbine. This indicates that counter-rotating wind turbines may be considered as an option for conventional wind turbines for domestic power generation, as they are more efficient under the same wind conditions.
INTRODUCCIÓN

La generación de energía eléctrica en el país cubre la demanda para la mayor parte de la población, aunque datos del último censo de población y vivienda del INEGI realizado en el país, indica que el 1.3% de la población sigue sin este servicio básico [1]. Actualmente se busca que toda la población cuente con energía eléctrica y las fuentes de generación renovables son una opción viable para cubrir esa meta. En el caso de la generación eólica, el uso de este tipo de energía se inició con un programa de aprovechamiento del Instituto de Investigaciones Eléctricas, en febrero de 1977 [2].

Según los datos obtenidos por la Asociación Mexicana de Energía Eólica, el potencial eólico que existe en el país es de aproximadamente 13466 MW y actualmente se tiene instalado en México 3876 MW divididos en 47 parques eólicos [3], destinados principalmente para la generación a la red eléctrica nacional o para autoconsumo. La perspectiva del sector eléctrico de la SENER es que para el 2022 el 35% de la generación provenga de fuentes renovables y de ese porcentaje el 15% provenga de la energía eólica [4].

EL objetivo de esta investigación es evaluar la turbina eólica de doble rotor contra-rotatoria, comparar los resultados obtenidos experimentalmente con los resultados obtenidos con una turbina convencional de un rotor y así proponer la turbina eólica de doble rotor como una alternativa para generación eléctrica para zonas urbanas y rurales donde exista el recurso eólico. Teóricamente se conoce que una turbina eólica de doble rotor tiene una eficiencia del 64% [5], mientras una turbina eólica convencional de un rotor tiene una eficiencia del 59% [6].

Considerando que mediante el uso de un segundo rotor corriente abajo del primer rotor, se aproveche la energía cinética del viento que pasa en el rotor corriente arriba y con la modificación mecánica al generador eléctrico (estator rotatorio), pueda aumentar la potencia y eficiencia de la turbina eólica mediante una contra-rotación del generador eléctrica a través de los rotores. Además de evaluar aerodinámicamente las narices de la góndola y escoger la mejor geometría para disminuir el arrastre [7]. El trabajo realizado comprende de 4 capítulos:
El capítulo I presenta la teoría detrás de las turbinas eólicas de eje horizontal de un rotor y de doble rotor partiendo de la dinámica de fluidos, los principios de funcionamiento, las ecuaciones fundamentales y sus parámetros de desempeño.

El capítulo II comprende el estado del arte referente a la caracterización de túneles de viento para aplicaciones eólicas, métodos de visualización de flujo, evaluación de turbinas eólicas de doble rotor contra-rotatorias y patentes de turbinas eólicas de doble rotor.

En el capítulo III se describe la instalación experimental, la instrumentación utilizada, los componentes de la turbina eólica y la metodología para evaluar la turbina eólica de doble rotor contra-rotatoria.

El capítulo IV presenta los resultados y su análisis de la caracterización de la instalación, la visualización de flujo en la góndola, la evaluación de la turbina eólica de doble rotor. Finalmente se tienen las conclusiones obtenidas de esta tesis.
CAPÍTULO I. FUNDAMENTOS DE LAS TURBINAS EÓLICAS DE EJE HORIZONTAL

En este primer capítulo se presentan los principios de la dinámica de fluidos, así como también el funcionamiento de las turbinas eólicas de eje horizontal de un solo rotor y de doble rotor. Se describen también los parámetros de desempeño de estas turbinas eólicas.
1.1 DINÁMICA DE FLUIDOS

En este apartado se presentan los principios fundamentales de la dinámica de fluidos para conocer aspectos de los tipos de regímenes los flujos (laminar o turbulento) y el efecto del número de Reynolds en la separación del flujo en la superficie de los cuerpos, la formación de los vórtices en la estela y el comportamiento del flujo turbulento.

1.1.1 CHORRO Y PERFILES DE VELOCIDAD

Cuando un fluido se descarga de un ducto, interactúa con el fluido de los alrededores formando un chorro. Los chorros se estudian de manera independiente de los flujos confinados porque después de su separación de las superficies sólidas, éstas ya no juegan un papel importante en su desarrollo. La figura 1.1 representa las regiones de chorros libres turbulentos y el desarrollo de sus perfiles de velocidad. Inmediatamente corriente abajo del ducto hay una región conocida como el núcleo potencial, dentro de la cual la velocidad y la concentración del fluido que proviene del ducto permanecen sin cambios.

Fuera de esta región se desarrolla una capa límite libre en la cual se transfieren el momentum y la masa perpendiculares a la corriente del flujo; se puede definir a la capa límite en el chorro como aquella región en la que hay grandes cambios laterales y pequeños cambios longitudinales en las propiedades del flujo. La región completamente desarrollada del flujo está precedida por una región de transición.

Las longitudes del núcleo potencial y de la región de transición es de 4 y 10 diámetros del ducto respectivamente. Estos valores también dependen de condiciones iniciales tales como la distribución de velocidades y de la intensidad de turbulencia a la salida del ducto. Las regiones completamente desarrolladas de los chorros turbulentos son semejantes y por lo tanto se pueden describir las distribuciones de velocidades transversal y axial [8].
1.1.2 CAPA LÍMITE

Cuando un fluido ideal circula en contacto con la superficie de un cuerpo, dada la ausencia de esfuerzos cortantes originados por la viscosidad, su velocidad no varía según la dirección normal a la superficie, es decir el gradiente de velocidad (u) del fluido según la normal a la superficie del cuerpo es nulo (du/dy =0), como se observa en la figura 1.2a. En cambio en un fluido real la viscosidad origina un esfuerzo tangencial (τ) y da lugar a un gradiente de velocidad (du/dy) normal a la superficie. La velocidad es nula en el punto de contacto fluido–superficie y aumenta a medida que se aleja de la superficie a lo largo de la normal a la misma (figura 1.2.b) [9].

En el estudio del movimiento de un fluido alrededor de un cuerpo se consideran dos regiones: una correspondiente a la zona de contacto entre el fluido y el cuerpo en donde los efectos del rozamiento son importantes, denominada capa límite y otra, más alejada de la superficie de contacto, en donde los efectos de rozamiento...
son despreciables y el flujo se puede considerar ideal. La capa límite se presenta tanto en flujos internos, por ejemplo en la circulación de un fluido por el interior de una tubería, como en flujos externos, como en el movimiento del aire alrededor del ala de un avión o de la pala de una turbina eólica. No existe una división clara entre la zona donde acaba la capa límite y donde se inicia la de flujo potencial [8].

En general, se considera que la capa límite se extiende desde la superficie del cuerpo hasta una distancia donde la velocidad alcanza el 99% de la velocidad correspondiente al flujo sin rozamiento de la corriente libre, figura 1.3. En la capa límite se puede presentar flujo laminar y turbulento. Por ejemplo, en el caso de flujo sobre una placa (figura 1.3). Inicialmente en la capa el límite el flujo es laminar, pero a medida que el flujo avanza a lo largo de la placa, la capa límite crece y aparece una zona de transición, donde se inicia el flujo turbulento. A una cierta distancia del borde de ataque se alcanza el flujo turbulento total en la capa límite.

La capa límite está delimitada donde el gradiente de velocidad de la corriente de fluido es cero. La distancia normal a la pared, donde los gradientes de velocidad se aproximan a cero, se le conoce como espesor de capa límite (δ). El espesor de capa límite es función del número de Reynolds, dado por la ecuación (1.1).

\[
Re = \frac{\rho U_L c}{\mu} = \frac{U_{\infty} L_{c}}{v}
\]

(1.1)

Donde \(\rho\) es la densidad del fluido, \(U_{\infty}\) la velocidad de la corriente libre del fluido, \(L_{c}\) es la longitud característica, \(\mu\) la viscosidad dinámica del fluido y \(v\) la viscosidad cinemática del fluido. El espesor de capa límite en una placa plana, depende además de la posición, de la estructura de flujo que se tenga. La solución exacta del espesor de capa límite para la zona laminar en el intervalo \(10^3 < Re > 10^6\), está dado por la ecuación (1.2).
Para la zona turbulenta existe una ecuación aproximada para el espesor de capa límite (para Re > 10^6), dada por la ecuación (1.3).

\[\delta = \frac{0.16x}{Re^{1/7}} \] \hspace{1cm} (1.3)

1.1.3 ESTELA

En el interior de la capa límite la variación de la presión en la dirección normal a la placa (dp/dy) es muy pequeña y se admite que la distribución de presiones en esa dirección (y) viene dada por el gradiente de presión del flujo potencial en la corriente libre. A lo largo de la placa, el perfil de velocidad y el aumento del espesor de la capa límite dependen esencialmente del gradiente de presión (dp/dy) en esa dirección (x). Si la presión disminuye en el sentido de la circulación del fluido, situación conocida como gradiente favorable, el espesor de la capa límite se reduce.

En cambio, si la presión aumenta en el sentido del flujo, situación conocida como gradiente adverso, el espesor de la capa límite crece, provocando que el fluido en la capa límite se frene. Si el gradiente de presión alcanza un valor suficientemente grande, entonces se produce la separación del flujo seguida de una zona de flujo inverso. La separación se produce en el punto en donde du/dy = 0. En estas condiciones, se origina el desprendimiento del flujo, formando una estela corriente abajo del punto de separación. En la figura 1.4 se observa este fenómeno para un fluido que rodea una superficie curva convexa.

La geometría de perfil deforma las líneas de corriente del flujo no perturbado, aumentando su velocidad. Corriente arriba del punto A, la aceleración del flujo tiende a compensar el efecto de frenado de la viscosidad y la capa límite permanece relativamente delgada como en el caso de la placa. En cambio, corriente abajo de A aparece un gradiente adverso de presión que se une al rozamiento viscoso, con un aumento de la capa límite hasta alcanzar un punto B de separación, a partir del cual para que el fluido siga desacelerándose debe producirse una inversión en el sentido del flujo [9].
A partir del punto de separación, se forma una zona de turbulencia, conocida como estela. Se produce una pérdida de energía por rozamiento. Los vórtices de la estela se mueven corriente abajo disipando energía por rozamiento viscoso en forma de calor. La figura 1.5 muestra este fenómeno en una esfera.

1.1.4 TURBULENCIA

La mayoría de los flujos en la naturaleza y en aplicaciones de ingeniería son turbulentos. Un flujo turbulento se caracteriza por las fluctuaciones de las tres componentes de la velocidad, así como en la presión y temperatura; estas fluctuaciones se sobreponen al promedio de cada propiedad. Por lo tanto para el análisis de un flujo turbulento se separan las fluctuaciones de la propiedad de su
valor promedio en el tiempo. Por lo que el promedio temporal de la componente u, se expresa en la ecuación (1.4) como:

$$\bar{u} = \frac{1}{T} \int_{t_0}^{t_0+T} u dt$$

(1.4)

En donde el intervalo de integración T es más grande que cualquier periodo de fluctuación de la velocidad u. Por lo tanto se puede definir la fluctuación u', como la diferencia entre un valor de velocidad dentro del intervalo de integración y la velocidad promedio temporal y se expresa con la ecuación (1.5):

$$u' = u - \bar{u} \quad u' = f(x, y, z, t)$$

(1.5)

Por definición se tiene que el promedio de la fluctuación es cero ($\bar{u}' = 0$). La irregularidad del fluido cuando la corriente se separa, hace una descripción determinista del movimiento, la cual se detalla como una función de las coordenadas del tiempo y el espacio, por lo que la aleatoriedad es una característica de todos los flujos turbulentos. Para cuantificar la magnitud de las fluctuaciones se emplea el valor medio cuadrático (rms, por sus siglas en inglés):

$$\overline{u'^2} = \frac{1}{T} \int_{t_0}^{t_0+T} u' dt$$

(1.6)

La raíz cuadrática media de u, se define como:

$$u_{rms} = \sqrt{\frac{\sum (u-\bar{u})^2}{n}}$$

(1.7)

Sí las integrales de las ecuaciones (1.4) y (1.6) son independientes del tiempo de inicio t_0, se tienen fluctuaciones estadísticamente estacionarias. Por lo tanto, la turbulencia en la componente a lo largo de la dirección del flujo se define como [10]:

$$Tu = \frac{\sqrt{\sum (u-\bar{u})^2}}{\bar{u}}$$

(1.8)

1.1.5 VÓRTICES Y CALLE DE VÓRTICES

Un vórtice es un flujo turbulento en rotación espiral con trayectorias de corriente cerradas como se observa en la figura 1.6. Un vórtice puede tener flujos circulares o rotatorios que poseen vorticidad. Se le puede vincular con la "circulación" o "rotación" en un fluido. En dinámica de fluidos, la vorticidad es la circulación por unidad de área a un punto en el campo de flujo [11].
La vorticidad se define matemáticamente como la rotación del vector velocidad. Es decir, es una extensión del concepto de velocidad angular de una partícula de fluido que rota en torno a algún eje. Como \(V = u \hat{i} + v \hat{j} + w \hat{k} \), la expresión matemática de la vorticidad es definida por la ecuación (1.9):

\[
\omega = \nabla \times u = \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right) \hat{i} + \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \hat{j}
\]

(1.9)

Una calle de vórtices de Von Kármán como se observa en la figura 1.7, es un patrón de vórtices que se repite en una estela causados por la separación no estacionaria de la capa de fluido al pasar sobre cuerpos sumergidos. Las calles de vórtices de von Kármán ocurren sólo cuando el número de Reynolds (Re) registra ciertos valores, por lo general superiores a 90. El intervalo de valores de Re oscilará según el tamaño y la forma del cuerpo a partir del cual se producen los vórtices así como de sus corrientes contrarias, es decir sus remolinos, lo mismo que en función de la viscosidad cinemática del fluido.
CAPÍTULO I
MARCO TEÓRICO

Cuando se trata de intervalos elevados de $Re (47<Re<10^7$ para cilindros circulares), se producen vórtices cada lado del cuerpo, formando dos filas de vórtices en su estela, cuyos centros se alternan, quedando en cada fila situados en una posición intermedia con respecto a los de la otra. Finalmente, la energía se consume por la viscosidad y el patrón se dispersa en función de la distancia de la fuente. Cuando sólo se produce un vórtice, alrededor del cuerpo se forma un patrón de flujo asimétrico y cambia la distribución de la presión [12].

1.2 FUNCIONAMIENTO DE LAS TURBINAS EÓLICAS DE EJE HORIZONTAL (UN ROTOR)

En este apartado se presentan los principios físicos que sustentan el funcionamiento de las turbinas eólicas de eje horizontal. Por el diseño aerodinámico de la palas se presentan dos fuerzas; fuerza de arrastre y fuerza de sustentación originadas por la acción del aire sobre la superficie del perfil, que son los principales principios teóricos del funcionamiento de estas turbinas eólicas.

1.2.1 PERFILES AERODINÁMICOS

Un perfil aerodinámico, como el que se muestra en la figura 1.8, es un cuerpo que tiene un diseño determinado para aprovechar al máximo las fuerzas que se originan por la variación de velocidad y presión cuando este perfil se sitúa en una corriente de aire. No es más que una forma geométrica que consigue una distribución asimétrica de presiones entre su parte superior (superficie de succión) y su parte inferior (superficie de presión). Debido a la forma que tiene el perfil aerodinámico, las líneas de corriente del aire sufren una desviación.

De acuerdo al segundo principio de Newton, se tendrá un cambio en la cantidad de movimiento, debido a que el valor de la velocidad de la línea de corriente después de ser desviada por la misma forma del perfil. De forma tal, que de acuerdo al principio de Bernoulli un cambio en la velocidad será compensado por un cambio en la presión, por lo cual se tendrán variaciones de presión a lo largo de la superficie del perfil, generándose entonces una fuerza resultante hacia arriba por la distribución asimétrica de presiones.

Una fuerza de reacción se produce también con dirección hacia arriba debido a la tercera Ley de Newton, que es generada como respuesta a la fuerza ejercida por el cambio en la dirección de las líneas de corriente hacia abajo. La fuerza
resultante debido a la distribución de presiones y a la fuerza en reacción que "empuja" hacia arriba, es la llamada fuerza aerodinámica resultante [13]. Bajo el anterior principio la potencia obtenida del viento es proporcional a la magnitud del viento de entrada.

![Diagrama](image)

Figura 1.8 Nomenclatura de un perfil aerodinámico [13].

1.2.2 SUSTENTACIÓN

La sustentación aerodinámica de un perfil es la componente perpendicular a la dirección del flujo de viento resultante y la fricción del fluido sobre la superficie del perfil como se muestra en la figura 1.9. El análisis del flujo se efectúa con un perfil asimétrico, por lo tanto las velocidades sobre sus superficies no serán iguales, ya que las partículas que se mueven sobre la superficie superior tienen que recorrer una distancia mayor que las que pasan por la inferior y por tanto su velocidad deberá ser mayor. Según el teorema de Bernoulli, una carga de presión baja deberá acompañar a una carga de velocidad alta. Por tanto, la presión del fluido que actúa sobre la superficie superior será menor que la que obra sobre la parte inferior del perfil.

Los aspectos anteriores se ven modificados por el ángulo de ataque (α), el cual está formado por la dirección del fluido y la cuerda del perfil. Si se aumenta el ángulo de ataque del perfil se formará una asimetría, dándole mayor peso de succión a la cara superior del perfil y menor a la cara inferior del perfil (presión).
En este caso el borde de salida del perfil tiene un papel fundamental y la fuerza resultante de presión es perpendicular al flujo incidente a la que se llama sustentación aerodinámica [14].

Como consecuencia de lo anterior se destaca que la existencia de sustentación va asociada a que la circulación alrededor del perfil no sea nula. La fuerza de sustentación es definida por la ecuación (1.10).

\[F_L = \frac{1}{2} \rho U^2 A C_L \] (1.10)

En donde \(F_L \) es la fuerza de sustentación, \(\rho \) es la densidad del fluido, \(U \) es la velocidad del flujo, \(A \) es el área transversal del cuerpo y \(C_L \) es el coeficiente de sustentación. Como el resto de coeficientes aerodinámicos, es adimensional. Este coeficiente calcula de acuerdo a la ecuación (1.11).

\[C_L = \frac{F_L}{\frac{1}{2} \rho U^2 A} \] (1.11)

1.2.3 ARRASTRE

Se denomina arrastre, a la fuerza que sufre un cuerpo al moverse a través del aire, y en particular a la componente de esa fuerza en la dirección de la velocidad relativa del cuerpo respecto del medio. El arrastre es siempre de sentido opuesto al de dicha velocidad, por lo que habitualmente se dice de ella...
que, de forma análoga a la de fricción, es la fuerza que se opone al avance de un cuerpo a través del aire. La teoría potencial de perfiles, desprecia la viscosidad en base al movimiento a números de Reynolds altos, predice que el arrastre aerodinámico del cuerpo es nula.

No obstante la experiencia confirma que un cuerpo inmerso en un flujo experimenta una fuerza de arrastre en la dirección de la corriente. Se puede distinguir, tomando el caso subsónico, que existen dos causas para la aparición del arrastre. Una es la fuerza de rozamiento debida a la viscosidad, generalmente, más pequeña que la fuerza de sustentación. Y otra, arrastre de presión, que aparece cuando la corriente se desprende como se muestra en la figura 1.10.

La fuerza de rozamiento se materializa en la aparición de una estela, detrás del perfil como se mostró en la figura 1.9, con una cantidad de movimiento más baja que la corriente libre, que está en relación directa con el valor del arrastre por rozamiento. Todos los perfiles en mayor o menor medida generan arrastre aerodinámico, presentándose un mínimo para un ángulo de ataque pequeño y creciendo moderadamente en función de la carga aerodinámica hasta que sufre un incremento al entrar en pérdida el perfil [14]. La ecuación de la fuerza de arrastre es:

\[
F_D = \frac{1}{2} \rho U^2 A C_D
\]

(1.12)

Este coeficiente de arrastre \((C_D)\) se calcula de acuerdo a la ecuación (1.13):

\[
C_D = \frac{\rho U^2 A}{F_D}
\]

(1.13)
1.2.4 RELACIÓN ENTRE SUSTENTACIÓN Y ARRASTRE EN UN PERFIL AERODINÁMICO DE UNA TURBINA EÓLICA

El efecto del flujo del viento sobre la superficie del perfil de la pala es la creación de dos fuerzas aerodinámicas que son: Fuerza de sustentación F_L, perpendicular a la dirección del flujo de viento resultante y la Fuerza de arrastre F_D, paralela a la dirección del flujo de viento resultante como se observa en la figura 1.11 [15]. El incremente o decremento de estas fuerzas dependen de los ángulos de orientación como se muestra en la figura 1.12.

Figura 1.11 Fluido de aire en la superficie de la pala de una turbinas eólica [15].

Figura 1.12 Efectos de la fuerza de sustentación y arrastre el perfil de la pala [15].
Estos ángulos son los siguientes: \(\alpha \) es el ángulo de ataque o de incidencia, que es la desviación angular entre la dirección resultante del flujo de aire y la cuerda máxima de la sección transversal del perfil, \(\beta \) es el ángulo de paso, que es la desviación angular entre el plano de rotación del eje del perfil y la cuerda máxima de la sección transversal de la misma y \(\partial \) que es el ángulo de diseño \((\partial=\alpha+\beta) \).

En cuanto a los demás perfiles aerodinámicos, incluidos los de las palas para aerogeneradores, entre menor sea la fuerza de arrastre en comparación con la fuerza de sustentación, más alta será la eficiencia \(\eta \) de la pala descrita en la ecuación (1.14).

\[
\eta_p = \frac{C_L}{C_D}
\]

(1.14)

En la figura 1.14 se muestran las curvas de los dos coeficientes \(C_L \) y \(C_D \) en función del ángulo de ataque. En condiciones de perdida aerodinámica, la eficiencia \(\eta \) de la superficie aerodinámica se reduce considerablemente y el comportamiento aerodinámico se convierte en inestable con la formación de una estela turbulenta.

Como se observa en la figura 1.13, el coeficiente de sustentación \((C_L) \) es aproximadamente proporcional al ángulo de ataque para valores inferiores a 15° y, a diferencia del coeficiente de arrastre \((C_D) \), el coeficiente de sustentación puede llegar a ser negativa con la consecuencia de que la fuerza de sustentación puede cambiar de dirección (sustentación negativa) [15].

![Figura 1.13 Curva polar de los coeficientes \(C_L \) y \(C_D \) con respecto al ángulo de ataque \(\alpha \) [15].](image)
Relacionando de las fuerzas de sustentación y arrastre, perpendicular y paralelamente al eje de la turbina, se obtiene:

- La fuerza motriz F_m útil para la generación de par del eje principal.
 \[
 F_m = F_p \sin \delta - F_r \cos \delta
 \]
 (1.15)
- La fuerza axial F_a, que no produce un par de torsión útil, pero provoca tensiones en el soporte del rotor.
 \[
 F_a = F_p \cos \delta \sin \delta
 \]
 (1.16)

1.2.5 ACCIÓN DEL FLUJO DE AIRE SOBRE EL Rotor DE UNA TURBINA EÓLICA

El rotor de una turbina eólica de eje horizontal se observa en el diagrama de la figura 1.14. Se considera una sección perpendicular al eje LL' de la pala y se establecen los siguientes conceptos:

- Eje del rotor: es el eje (OO') alrededor del cual gira el rotor con velocidad angular ω en rad/ s, donde $\omega = \frac{2n\pi}{60}$, siendo n la velocidad de rotación en revoluciones por minuto (rpm).
- Diámetro del rotor: es el diámetro del círculo barrido por las palas (2R). El área A barrida por el rotor es $A = \pi R^2$ (R: radio del rotor).
- Eje de la pala: es el eje longitudinal de la misma (LL'), perpendicular al eje de giro del rotor (eje OO'). La pala puede girar sobre sí misma alrededor de este eje, con lo que puede regularse la potencia que capta el rotor del viento, a través del ángulo de ataque.
- Sección de la pala: es la sección resultante de la intersección de la pala con un plano perpendicular a su eje. La línea que define su contorno se conoce como perfil de la pala. La sección y su perfil varían desde la base de la pala hasta su extremo P.
- Velocidad del extremo de la pala: es la velocidad lineal o tangencial de la punta o extremo de la pala (v) y viene dada por: $v = \omega R$, siendo ω la velocidad angular y R el radio de la pala. Se la conoce también por velocidad de punta.
El flujo de aire alcanza el perfil con una velocidad absoluta \vec{u}, como se observa en la figura 1.15. Una sección, situada a una distancia r del eje de giro del rotor, se mueve con velocidad \vec{v} (siendo $v = \omega r$) y el viento presenta una velocidad relativa \vec{w}, respecto a esta sección definida por la relación vectorial: $\vec{w} = \vec{u} - \vec{v}$. El viento ejerce sobre la sección una fuerza resultante F_R, suma de dos componentes: una paralela a la dirección de la velocidad relativa (fuerza de arrastre F_D) y otra perpendicular a dicha dirección (fuerza de sustentación F_L).
La fuerza resultante F_R se puede descomponer según dos ejes: uno según la dirección de la velocidad absoluta del viento \vec{u}, y otro normal al anterior, según el plano de rotación del rotor. Estas componentes son, la fuerza F_a que da origen al empuje axial del viento sobre el rotor y la fuerza F_m responsable del par o momento del rotor que hace girar al mismo, desarrollando potencia en el eje de la máquina (figuras 1.15) [16].

1.3 ECUACIONES FUNDAMENTALES DE LAS TURBINAS EÓLICAS DE EJE HORIZONTAL

En este apartado se presentan las ecuaciones fundamentales de las turbinas eólicas que describen teóricamente la máxima eficiencia (coeficiente de potencia y coeficiente global de potencia) establecidas por el límite de Betz en condiciones ideales de flujo y del diseño aerodinámico del rotor.

1.3.1 POTENCIA MÁXIMA TEÓRICA. LÍMITE DE BETZ

Existen límites superiores para la potencia aprovechada, según el cual ningún generador puede extraer del viento una potencia superior a la fijada por este límite. Se establece a través del teorema de Betz y, aunque este teorema se demuestra para máquinas de eje horizontal, sus principios también son aplicables a las de eje vertical. De hecho, la eficiencia de estas últimas se acostumbra a referir a la potencia máxima aprovechada dada por el límite de Betz [17].

Se considera el flujo de aire indicado en la figura 1.16 que atraviesa una área A barrida por un rotor. Dado que las variaciones de presión y temperatura son pequeñas, se considera que el aire se comporta como un fluido incompresible (densidad constante) por lo que la ecuación de continuidad se expresa:

$$u_1A_1$$

Aplicando el principio de la conservación de la cantidad de movimiento, la fuerza F que el flujo másico \dot{m} realiza sobre el rotor viene dado por:

$$F = \dot{m}(u_1 - u_2) = \rho Au(u_1 - u_2)$$
Figura 1.16 Flujo de aire circulando a través del área barrida por el rotor [17].

Si la potencia \(P_a \) que el flujo de aire transfiere al rotor de la máquina es el producto de la fuerza por la velocidad \(P_a = F \cdot u \). Combinando las expresiones anteriores y considerando: \(u = 0.5(u_1 + u_2) \) se obtiene:

\[
P_a = \frac{1}{4} \rho A (u_1 + u_2)(u_1^2 - u_2^2)
\] (1.17)

La condición de máxima potencia se obtiene derivando la ecuación (1.16). La máxima potencia se presenta para una velocidad: \(u_2 = \frac{1}{3} u_1 \). Sustituyendo este valor de la velocidad en la ecuación (1.17) se obtiene la potencia máxima que teóricamente puede aprovecharse de un flujo de viento de velocidad \(u_1 \) y viene dada por la ecuación (1.17):

\[
P_{a,\max} = \frac{16}{54} \rho A u_1^3 = \frac{16}{27} \left(\frac{1}{2} \rho A u_1^3 \right) = \frac{16}{27} P_d = 0.593 \ P_d
\] (1.18)

La expresión anterior constituye el teorema o límite de Betz, según el cual la potencia máxima que teóricamente puede ser aprovechada de un flujo de viento es tan sólo un 59.3% de la potencia disponible en el mismo. En consecuencia, el valor máximo del coeficiente \(C_p \), es igual a 0.593. En la práctica este límite superior nunca se alcanza, pudiendo llegar a valores sólo algo superior a 0.4 en mejor de los casos. El límite de Betz expresa, “la máxima potencia que puede extraerse de un flujo de aire con una turbina ideal es igual al 59.3% de la potencia del flujo incidente (potencia disponible)” [17].
1.3.2 COEFICIENTE DE POTENCIA DEL ROTOR

La potencia eólica del viento antes de incidir sobre el rotor se conoce como potencia eólica disponible \(P_d \). Su relación con la potencia en el eje \(P \) se establece a través de una eficiencia de conversión o coeficiente de potencia \((C_P) \) definido como la relación entre la potencia en el eje del rotor y la disponible del viento, como lo establece la ecuación (1.19) [15].

\[
C_P = \frac{P}{P_d} = \frac{M \omega}{\frac{1}{2} \rho U^3 A}
\]

(1.19)

Donde \(M \) es el par producido por del rotor, \(\omega \) la velocidad angular. El coeficiente \(C_P \) es función de la velocidad específica \((\lambda) \), definida como la relación entre la velocidad angular \((\nu) \) del extremo de la pala y la velocidad del viento \((U) \) que viene dado por la ecuación (1.20):

\[
\lambda = \frac{\nu}{U} = \frac{\omega R}{U}
\]

(1.20)

En la figura 1.17 se muestra la variación del coeficiente \(C_P \) en función de la velocidad específica \(\lambda \) para distintos tipos de turbinas eólicas.

Figura 1.17 Variación del coeficiente de potencia \((C_P)\) con respecto de la velocidad específica \((\lambda)\) para distintos tipos de rotores eólicos [15].
1.3.3 COEFICIENTE GLOBAL DEL AEROGENERADOR

El coeficiente global de potencia \((C_e)\) o eficiencia global de la turbina eólica \((\eta_g)\) es la relación entre la potencia útil o potencia eléctrica \((P_u)\) a la salida del generador eléctrico y la potencia eólica del viento o potencia disponible del viento \((P_d)\) como se expresa en la ecuación (1.21) y (1.22). A esta eficiencia también se le conoce como coeficiente eólico-eléctrico \((C_e)\).

\[
C_e = \eta_g C_p
\]
(1.21)

\[
C_e = \frac{P_u}{P_d} = \frac{P_e}{\frac{1}{2} \rho U^3 A}
\]
(1.22)

Para determinar la curva del coeficiente global frente a la velocidad del viento se parte de la curva de potencia del aerogenerador. A partir de la ecuación (1.22), el coeficiente global de potencia también puede expresarse como en la ecuación (1.23):

\[
C_e = \frac{P_e}{\frac{1}{2} \rho U^3 A} = K_v \frac{P_e}{\lambda^3}
\]
(1.23)

En donde \(K_v = \frac{2}{\rho A}\). Si se admite la densidad del aire \((\rho)\) constante, \(K_v\) es una constante de cada turbina eólica. Si se introduce la velocidad específica \((\lambda)\), para una turbina eólica de radio \(R\) y área de barrido \(A\), que gire con velocidad angular \((\omega)\), se tiene la ecuación (1.24):

\[
\lambda = \frac{u}{v} = \frac{\omega R}{v} \rightarrow C_e = K_v \frac{P_3}{u^3} = k_v \frac{\lambda^3 P_3}{(\omega R)^3}
\]
(1.24)

Conocida la curva de potencia eléctrica con respecto a la velocidad del viento de una turbina eólica, mediante la ecuación (1.22) se puede determinar para cada velocidad de viento el valor del coeficiente global de la turbina [17].
1.4 PARÁMETROS DE DESEMPEÑO DE LAS TURBINAS EÓLICAS (UN ROTOR)

En este apartado se describen los parámetros físicos de las turbinas eólicas de un rotor que influyen en su desempeño y como la alteración de estos parámetros afecta en la potencia eléctrica y la eficiencia.

1.4.1 DIÁMETRO DEL ROTOR

El diámetro del rotor determina cuanta energía se puede producir. La figura 1.18 da una idea de los tamaños de rotor normales en aerogeneradores: una turbina típica con un generador eléctrico de 600 kW suele tener un rotor de 44 m. Si duplica el diámetro del rotor, obtendrá un área cuatro veces mayor. Esto significa que también obtendrá del rotor una potencia disponible cuatro veces mayor. Los diámetros de rotor pueden variar, ya que muchos de los fabricantes optimizan sus máquinas ajustándolas a las condiciones de viento locales: un gran generador eléctrico requiere más potencia (es decir, vientos altos) sólo para girar.

Por lo tanto, si se instala un aerogenerador en un área de vientos bajos realmente maximizará la producción anual utilizando un generador bastante pequeño para un tamaño de rotor determinado (o un tamaño de rotor más grande para un generador dado). Para una máquina de 600 kW, los tamaños de rotor pueden variar entre 39 m a 48 m. La razón por la que en zonas de vientos bajos, se puede obtener una mayor producción de un generador relativamente más pequeño es que la turbina estará funcionando durante más horas a lo largo del año [16].

Figura 1.18 Incremento de la potencia nominal con respecto al diámetro del rotor [15].
1.4.2 POTENCIA ELÉCTRICA DEL GENERADOR CON RESPECTO A LA VELOCIDAD DEL VIENTO

La relación de la generación eléctrica con respecto al viento que incide en el área de barrido del rotor se representa de manera gráfica mediante una curva de potencia. La curva de potencia de un aerogenerador es un gráfico que indica cuál será la potencia eléctrica disponible en el aerogenerador a diferentes velocidades del viento como se observa en la figura 1.19.

![Curva de potencia](image)

Figura 1.19 Curva de potencia de una turbina eólica de eje horizontal de potencia nominal de 1 MW (velocidad de arranque de 4 m/s, velocidad nominal 13 m/s y velocidad de paro 25 m/s) [15].

En esta curva se distinguen los siguientes valores:

- La velocidad de arranque U_A. Es la velocidad del viento para la cual el generador comienza a suministrar potencia útil. En aerogeneradores rápidos tripala de eje horizontal es del orden de unos 3 m/s a 5 m/s. Por debajo de estos umbrales, el generador no produce potencia eléctrica.

- La velocidad nominal U_N. Es la velocidad del viento para la que se alcanza la potencia nominal del aerogenerador. En rotores tripala de eje horizontal está comprendida entre 12 m/s y 15 m/s. El tramo de curva de potencia comprendido entre la velocidad de arranque (U_A) y la nominal (U_N) sigue una ley no lineal respecto a la velocidad. Dado que la pendiente de esta curva es pequeña, en muchos modelos simplificados de cálculo se acostumbra a tomar, en primera aproximación, una variación lineal de la potencia con la velocidad del viento para este tramo de curva.
• La velocidad de desconexión o paro U_D. Es la velocidad del viento a la cual el rotor se detiene por la acción de los sistemas de regulación y control, para evitar el riesgo de sufrir algún daño dado la elevada velocidad del viento. En rotores tripala, esta velocidad se sitúa en el intervalo de 20 m/s a 30 m/s [17].

1.4.3 SISTEMAS DE REGULACIÓN DE POTENCIA

La regulación de potencia a partir de la velocidad nominal se realiza mediante los sistemas de regulación y control (activo por variación del ángulo de paso de palas o pasivo por pérdida aerodinámica o desprendimiento de flujo). Según el sistema de regulación y control, se distinguen dos tipos de curvas de potencia en aerogeneradores como se observa en la figura 1.20 [17].

• Paso fijo (pérdida aerodinámica): por diseño aerodinámico de las palas y sin partes móviles, de tal forma que se varía la pérdida aerodinámica en función de la velocidad de viento, presentan una caída más o menos brusca hasta la velocidad de desconexión.

• Paso variable: incorporan servomotores que provocan el giro de la totalidad de las palas alrededor del eje longitudinal de las mismas, y por tanto la variación del ángulo de paso y en consecuencia de la fuerza aerodinámica de sustentación sobre la pala.

![Figura 1.20 Curva de potencia de una turbina eólica con regulación activa y regulación pasiva [16].](image-url)
En este apartado se describe el funcionamiento de las turbinas eólicas de doble rotor contra-rotatorias y cómo influye el uso de un segundo rotor en la generación eléctrica y en la eficiencia de la turbina en comparación de las turbinas eólicas convencionales.

1.5.1 FUNCIONAMIENTO DE LAS TURBINAS EÓLICAS DE DOBLE ROTOR CONTRA-ROTATORIAS

Las turbinas eólicas convencionales (un rotor) presentan generalmente el mismo inconveniente; necesitan vientos mayores a 11 m/s, para generar a su potencia nominal y por ende hay pocas áreas aplicables [18]. Para superar esos inconvenientes se ha desarrollado turbinas eólicas que mediante un segundo rotor en diferentes configuraciones de colocación como se observa en la figura 1.21, se aprovecha el flujo de viento de la estela y con la energía cinética residual se instala un segundo rotor para incrementar la potencia de la turbina eólica.

El mecanismo de transmisión puede ser directo o por mecanismos de engranajes que suman el par de cada rotor al generador eléctrico. La suma del par de los rotores ayuda a incrementar la potencia del rotor del generador o con modificaciones del mismo generador eléctrico; aumentan la velocidad angular entre la bobina del rotor y la bobina del estator y así aumentar la potencia.

Figura 1.21 Configuraciones de rotores para turbinas eólicas de doble rotor [18].
Las configuraciones más utilizadas en estas turbinas eólicas de doble rotor, son las que tienen el mismo diámetro de los rotores configuración a) y la configuración b), donde el diámetro del rotor corriente arriba es más pequeño en relación al rotor corriente abajo. En ambas configuraciones se aprovecha el viento residual del primer rotor para que el segundo rotor capte esa porción del viento como se observa en la figura 1.22.

Figura 1.22 Comportamiento del flujo entre rotores de una turbina eólica de doble rotor [18].

1.5.2 PARÁMETROS DE DESEMPEÑO

Para el desempeño correcto de las turbinas eólicas se deben considerar dos factores principalmente; la relación de diámetros de los rotores y la distancia axial entre ellos [18]. Con respecto a la relación de diámetros, esta se ve reflejada con la potencia de salida, ya que al tener un diámetro de rotor mayor se tiene una mayor captación del viento y por ende la potencia transmitida al generador aumenta como se observa en la figura 1.23 para una turbina eólica de doble rotor. La relación de diámetros se establece con la ecuación (1.25).

\[
R_D = \frac{D. \text{ rotor corriente abajo} \ [m]}{D. \text{ rotor corriente arriba} \ [m]}
\] (1.25)

Con esta relación, se puede utilizar para establecer un diámetro óptimo de los rotores, y como su tamaño influyen en el coeficiente de potencia de la turbina eólica de doble rotor como se observa en la figura 1.23.
Como se mencionó anteriormente otro factor que influye en el desempeño de estas turbinas es la distancia axial entre rotores. Como se observa en la figura 1.22, el flujo entre rotores indica la calidad de la uniformidad del viento, así que se debe tener una distancia óptima, ya que si la distancia es muy corta no se tiene una uniformidad del viento y eso afectaría en la rotación del rotor corriente abajo y si es la distancia es muy lejana la energía cinética del viento se puede disipar en el ambiente. En la figura 1.24 se observa el efecto de la distancia axial entre rotores en el coeficiente de potencia de la turbina eólica.

Figura 1.23 Efectos de la relación de diámetros en el coeficiente de potencia [18].

Figura 1.24 Efecto de la distancia axial entre rotores en el coeficiente de potencia [18].
CAPÍTULO I. ESTADO DEL ARTE

En este capítulo se describen las investigaciones realizadas para evaluar y caracterizar experimentalmente turbinas eólicas de eje horizontal de un solo rotor (convencionales) o de doble rotor contra-rotatorio en túneles de viento. También se presentan de los componentes aerodinámicos que forman parte de las turbinas.
CAPÍTULO II

ESTADO DEL ARTE

Chen, Tzeng, Valdivia y Yang (2010), aplicaron un procedimiento experimental para caracterizar el flujo en la descarga de un túnel de viento de circuito abierto y obtuvieron las curvas de potencia de una turbina eólica. Realizaron la medición de velocidad del viento en el túnel y visualizaron la distribución del flujo. Dividieron en 20 secciones la sección de pruebas del túnel e instalaron un anemómetro de copas para medir la velocidad del viento en el centro de cada. Utilizaron una escala de colores para una mejor visualización de la distribución del flujo.

La figura 2.1 presenta la sección rectangular del túnel de viento dividido en 20 puntos. Cada una de los ocho figuras (a, b, c, d, e, f, g y h) son para las frecuencias de 20, 25, 30, 35, 40, 45, 50 y 55 Hz respectivamente. Los resultados muestran que el incremento de la frecuencia del motor eléctrico aumenta la velocidad del viento en la descarga del túnel y ésta presenta una mejor distribución del flujo [19].

![Figura 2.1 Distribución de las velocidades en los puntos de medición a diferentes frecuencias [19].](image-url)
Habash, Groza, Yang, Blouin, y Guillemette (2011), caracterizaron una turbina eólica contra-rotaria de potencia baja para encontrar su desempeño mediante la curva de potencia, visualización de flujo mediante un generador de humo y la variación de turbulencia en la sección de pruebas en el túnel de viento de circuito abierto. La turbina cuenta con dos rotores de palas del mismo diámetro de 0.23 m, que están acopladas a dos generadores eléctricos por transmisión directa.

Para la curva de potencia, analizaron ambos rotores (corriente arriba y corriente abajo) y se midió la potencia eléctrica a diferentes velocidades de viento y No. de Reynolds, que se calcula mediante la ecuación (2.1). Como se observa en la figura 2.2 el funcionamiento de la turbina se encuentra en un intervalo de velocidad de 15 m/s a 30 m/s y el rotor corriente arriba es más eficiente y genera más potencia, ya que absorbe parte la energía cinética de la corriente libre.

\[Re = \frac{\rho UD}{\mu} \]

(2.1)

Figura 2.2 Curvas de potencia a diferentes velocidades de viento y a No. De Reynolds [20].

Para variar la intensidad de turbulencia utilizaron tres mallas de diferentes tamaños, como se muestra en la figura 2.3, y saber su efecto en la generación eléctrica de la turbina. La primera malla utilizada fue de cuadros de 19 mm x 19 mm, la segunda malla fue de cuadros de 38 mm x 38 mm y la última malla fue de cuadros de 76 mm x 76 mm. Para calcular la intensidad de turbulencia utilizaron la ecuación (2.2).

\[I_u = \frac{\sigma_u}{U} \]

(2.2)
Donde σ_u, es la desviación estándar de las mediciones de velocidad y U, es la velocidad promedio. Las mediciones de velocidad fueron realizadas con un tubo de Pitot. La turbulencia obtenida para la malla pequeña fue del 14%, para la malla mediana fue del 12% y para la malla grande fue del 8%. El efecto de la turbulencia en la generación eléctrica se observa en la figura 2.3 por el tipo de malla utilizada. Como se aprecia en la figura 2.4 la turbulencia de la malla mediana tiene un efecto positivo aumentando 0.8 W más a la potencia nominal de la turbina eólica.

Para la visualización, utilizaron la técnica de humo para conocer el comportamiento del flujo a través de la turbina eólica. Con esta técnica se aprecia la expansión del flujo después del primer rotor como se ve en la figura 2.5 y los vórtices generados por la interacción de las palas de los rotores.
Concluyeron que la turbina eólica utilizando doble rotor contra-rotatorio genera hasta un 60% de más de potencia eléctrica a comparación de utilizar un solo rotor desde la velocidad de arranque hasta la velocidad de desconexión [20].

Mitulet et al. (2014), desarrollaron un método experimental para determinar la potencia de una turbina eólica de doble rotor contra-rotatoria. Las pruebas se realizaron en la sección de pruebas túnel de viento de circuito cerrado a diferentes velocidades. El rotor corriente arriba es un perfil aerodinámico EPPLER 664 con un diámetro de 2.46 m y el rotor corriente abajo es de un perfil NACA 7414 con un diámetro de 2.66 m.

Como se observa en la Tabla 2.1, el aumento de potencia media es alrededor de 40% para cada velocidad del viento. Los resultados muestran la contribución del segundo rotor eólico que aumenta la potencia de salida.

Tabla 2.1 Comparación de la potencia de la turbina eólica contra-rotatoria contra la turbina eólica de un solo rotor [21].

<table>
<thead>
<tr>
<th>Velocidad del viento [m/s]</th>
<th>5.5</th>
<th>6.3</th>
<th>6.88</th>
<th>7.74</th>
<th>8.7</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{max} Un rotor [W]</td>
<td>98.12</td>
<td>148</td>
<td>192</td>
<td>275</td>
<td>388.84</td>
<td>591.13</td>
</tr>
<tr>
<td>P_{max} Doble rotor [W]</td>
<td>179.1</td>
<td>245</td>
<td>305</td>
<td>461.8</td>
<td>614.9</td>
<td>939.3</td>
</tr>
<tr>
<td>Incremento de la Potencia [%]</td>
<td>45.2</td>
<td>39.6</td>
<td>37.0</td>
<td>40.5</td>
<td>36.8</td>
<td>37.1</td>
</tr>
</tbody>
</table>

La generación eléctrica corresponde a una función de la velocidad de rotación relativa entre el rotor y estator del generador eléctrico que son accionadas por los rotores de palas. En la figura 2.6 se observa la curva de potencia con respecto a la velocidad relativa entre rotor y estator en rpm a las velocidades de viento en que se evaluó la turbina.
El análisis de los resultados obtenidos muestra que el uso de un segundo rotor contribuye al aumento de la potencia de la turbina eólica un 39% en promedio para el intervalo de velocidades del viento en que se evaluó [21].

Merchant, Gregg, Treuren y Gravagne (2009), analizaron el desempeño de una turbina eólica contra-rotatoria mediante pruebas en el chorro de un túnel de viento de circuito abierto. Los dos rotores de palas están acoplados a dos generadores eléctricos (uno por cada rotor) mediante transmisión directa. Para obtener la curva de potencia, utilizaron un sistema para variar la carga eléctrica como se observa en la figura 2.7 y así medir la tensión de generación y la corriente en la carga.

Figura 2.6 Curvas de potencia a diferentes velocidades de viento y velocidades angulares [21].

Figura 2.7 Diagrama del sistema para variar cargas eléctricas [22].
Establecieron diferentes velocidades de viento en el chorro del túnel y mediante el sistema para variar la carga eléctrica y los instrumentos de medición se obtuvieron la tensión de generación y la corriente en la carga. Con estos dos parámetros se determinaron la potencia eléctrica de los generadores utilizando la ecuación (2.3):

\[P_{eléctrica} = V \cdot I \ [W] \tag{2.3} \]

Donde \(V \), es la tensión de generación e \(I \), es la corriente en la carga. Además con la velocidad del aire, área del rotor y condiciones ambientales mediante la ecuación (2.4) calcularon la potencia disponible del viento y con la ecuación (2.5) se obtiene la eficiencia global para cada rotor de palas

\[P_d = \frac{1}{2} A \rho U^3 \ [W] \tag{2.4} \]

\[\eta_e \% = \frac{P_{eléctrica}[W]}{P \ [W]} \tag{2.5} \]

Donde \(A \), es el área del rotor, \(\rho \), es la densidad del aire en y \(U \), la velocidad del viento. En la tabla 2.2 se muestran los valores de los parámetros antes mencionados obtenidos durante la evaluación para cada intervalo de velocidad del viento.

Tabla 2.2 Comparación de la eficiencia obtenida por cada rotor y con doble rotor [22].

<table>
<thead>
<tr>
<th>Velocidad del viento [m/s]</th>
<th>Potencia de viento [W]</th>
<th>Potencia eléctrica [W]</th>
<th>Eficiencia de rotor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corriente arriba</td>
<td>Corriente abajo</td>
<td>Total</td>
</tr>
<tr>
<td>6.70</td>
<td>1.154</td>
<td>0.0374</td>
<td>0.0455</td>
</tr>
<tr>
<td>8.94</td>
<td>2.654</td>
<td>0.1323</td>
<td>0.1606</td>
</tr>
<tr>
<td>11.17</td>
<td>5.502</td>
<td>0.3437</td>
<td>0.3486</td>
</tr>
<tr>
<td>13.41</td>
<td>9.242</td>
<td>0.4989</td>
<td>0.4738</td>
</tr>
<tr>
<td>15.64</td>
<td>14.406</td>
<td>0.6691</td>
<td>0.6351</td>
</tr>
<tr>
<td>17.88</td>
<td>22.349</td>
<td>0.8356</td>
<td>0.7848</td>
</tr>
</tbody>
</table>

Como se observa en la tabla 2.2, el aporte del segundo rotor (corriente abajo) en la eficiencia de la turbina es considerable, ya que con un solo rotor es 50% menos eficiente en comparación del sistema de doble rotor. La condición donde se
encuentra la mayor eficiencia fue a la velocidad de 11.17 m/s teniendo una eficiencia de 12.58% a esa condición [22].

Sung, Tae-Soo y Ki-Wahn (2004), realizaron una investigación para determinar la potencia y caracterizar un aerogenerador de doble rotor contra rotatorio y cómo influyó en el desempeño de este la distancia axial entre rotores y el diámetro de estos. La caracterización fue para graficar el comportamiento del flujo entre rotores con perfiles de velocidad y así determinar una distancia adecuada para tener un mejor desempeño en la potencia de salida. Primero determinaron los puntos de medición como se muestra en la figura 2.8 tomando como referencia el diámetro del rotor corriente arriba.

![Figura 2.8 Puntos de medición en el rotor de la turbina eólica de doble rotor [23].](image)

Estos puntos del plano de medición coinciden con el diámetro del rotor corriente abajo que tiene el doble del tamaño de rotor corriente arriba. Los planos de medición para trazar los perfiles de velocidad fueron ubicados a diferentes distancias como se observa en la figura 2.9. Estos planos se determinaron tomando como referencia el diámetro del rotor.
Figura 2.9 Desarrollo de los perfiles de velocidad en una turbina eólica de doble rotor [23].

Estas distancias donde se ubican los planos y puntos de medición son en base al diámetro del rotor corriente arriba ya que coinciden con su diámetro y son adecuados para tener una interpretación gráfica del desarrollo del flujo en la entrada de la turbina, entre rotores y a la salida. En la figura 2.10 se muestran los resultados de la variación de la potencia de salida con respecto a la variación del diámetro del rotor corriente arriba.

Figura 2.10 Efectos del diámetro del rotor corriente abajo en la potencia [23].
CAPÍTULO II ESTADO DEL ARTE

El diámetro rotor corriente arriba corresponde a 1/2 con respecto al diámetro del rotor corriente abajo y esto indica que se tiene un incremento en la potencia de la turbina. También determinaron que la separación adecuada entre rotores de D/2, tomando como referencia el diámetro del rotor corriente abajo y los resultados mostraron el incremento de la potencia de la turbina como se muestra en la figura 2.11.

![Figura 2.11 Efectos de la distancia entre rotores en la potencia de la turbina [23].](image)

Concluyeron que la potencia de la turbina incrementa 20% con doble rotor respecto a las turbinas convencionales de un solo rotor, tomando en cuenta que el tamaño del rotor principal deber ser mayor que el del rotor auxiliar. La distancia adecuada entre los rotores deber ser de D/2 tomando como referencia el diámetro del rotor auxiliar y se obtiene un incremento de 9% en la potencia de la turbina [23].

Li, Wang y Zhang (2011), realizaron un estudio experimental para determinar la potencia de una turbina contra-rotatoria en un túnel de viento. Los resultados que obtuvieron fue la existencia de una mayor extracción de energía de la energía cinética del viento y en consecuencia el rendimiento y la potencia es mayor. Esto da como resultado la relación de dependencia entre la potencia del rotor corriente abajo con la velocidad específica λ como se observa en la figura 2.12. Para calcular la velocidad específica utilizaron la ecuación 2.6.
Donde \(\omega \), es la velocidad angular, \(R \), es el radio del rotor y \(U \), la velocidad del viento.

\[
\lambda = \frac{\omega R}{U}
\] \hspace{1cm} (2.6)

Capítulo II
ESTADO DEL ARTE

Figura 2.12 Relación de la potencia del rotor corriente abajo con el rotor corriente arriba [24].

Concluyeron que la velocidad angular del rotor corriente arriba tiene muy poco efecto sobre la potencia del rotor corriente abajo; sin embargo, la velocidad de corriente libre del viento sí tiene un efecto importante en el rendimiento y la potencia del rotor corriente abajo. Con el aumento de la velocidad del viento, la velocidad de rotación óptima del rotor aumenta linealmente [24].

\textbf{Abbas et al. (2014)}, estudiaron el desempeño de una turbina eólica de doble rotor contra rotatorio instalado en campo. El objetivo de las pruebas en campo fue verificar el desempeño del diseño. Los resultados mostraron que el coeficiente de potencia de este modelo con un solo rotor es menor y que existe un aumento significativo utilizando doble rotor en la turbina eólica. Los resultados obtenidos se muestran en la figura 2.13 mediante la curva de potencia.

Los resultados presentan que el coeficiente de potencia máximo de este modelo con un solo rotor es del 18%, y el coeficiente de potencia para el modelo de sistema con dos rotores es de aproximadamente 22% [25].
Figura 2.13 Curva de potencia de la turbina eólica de doble contra-rotatoria [25].

Shen, Zakkam, Sorensen y Appa (2007), presentaron un estudio numérico para determinar el desempeño de una turbina eólica contra-rotatoria. El análisis lo realizaron mediante el uso de la técnica del actuador lineal implementado en el código de Navier-Stokes en EllipSys 3D. Los resultados que obtuvieron durante el análisis de la distancia entre rotores fue que el coeficiente de sustentación es independiente de la distancia entre rotores, excepto que presenta fluctuaciones cuando la distancia es muy corta como se muestra en la figura 2.14.a.

Figura 2.14 Resultados obtenidos a) Coeficiente de arrastre y b) coeficiente de potencia de la turbina eólica de doble rotor a 10 m/s [26].
En contraste con el coeficiente de sustentación, el coeficiente de potencia decrece ligeramente cuando la distancia se reduce como se observa la figura 2.14b. La curvas de potencia obtenida para la turbina eólica de doble rotor y para la turbina eólica de un solo rotor y se observa en la figura 2.15.

![Figura 2.15 Comparación de la curva de potencia de la turbina de doble y de un rotor [26].](image)

El análisis muestra que la producción anual de energía de la turbina de doble rotor puede aumentar a aproximadamente 43.5%, en comparación con una turbina eólica con un solo rotor. Con el fin de determinar los ajustes óptimos de la turbina de doble rotor, se estudiaron los parámetros tales como la distancia entre dos rotores y velocidad de rotación [26].

Saeidinezhad, Akbar y Dehgan (2014), aplicaron un método para visualizar el flujo en un cuerpo revolucionado (para aplicaciones navales) mediante un generador de humo en la sección de pruebas de un túnel de viento de flujo abierto. La técnica de visualización describe el comportamiento del flujo mediante el análisis de los vórtices en la sección transversal de cuerpo a diferentes longitudes, teniendo en cuenta dos formas diferentes de narices como se observa en la figura 2.16.
Para la visualización mediante esta técnica utilizaron un sistema de iluminación mediante un láser de longitud de onda de 532 nm para iluminar un plano en la sección transversal del cuerpo como se observa en el diagrama de la figura 2.17, y así realzar el humo en la sección de pruebas. Además para capturar fotográficamente los vórtices, se utilizó una cámara profesional configurada a 1/13 de segundo por toma.

Los resultados de la visualización muestran el desarrollo de los vórtices (figura 2.18) en diferentes planos transversales de visualización. Las condiciones en el túnel de viento en que se efectuó la visualización fue una velocidad de referencia de 5 m/s con una intensidad de turbulencia de 0.7% utilizando la nariz con geometría STR DRDC.
Con este método de visualización con el generador de humo, se pudo capturar fotográficamente la formación de los vórtices en la superficie del cuerpo en los diferentes planos, y así describir el comportamiento del flujo mediante el análisis de los vórtices, además de la influencia de la geometría de la nariz en la separación del flujo [27].

Appa., (2001), patentó una turbina eólica de doble rotor contra-rotatoria la cual se observa en la figura 2.19, acoplados por transmisión directa a un solo generador eléctrico. El rotor corriente arriba está acoplado al rotor del generador eléctrico y el rotor corriente abajo al estator del generador, con el fin de aumentar la velocidad relativa entre rotor y estator, y así aumentar la potencia de salida.
Para justificar el incremento de la potencia teóricamente, se partió del criterio del límite de Betz considerando los dos rotores como se observa en la figura 2.20. Se muestra el aumento de las líneas de corriente del flujo después del rotor corriente arriba. Partiendo de esto, la potencia puede ser descrita a través de la ecuación (2.7).

Figura 2.20 Líneas de corriente alrededor de los dos rotores [28].

\[
P = \frac{1}{2} \rho A_1 \left(\frac{U_1 + U_2}{2} \right) \left(U_1^2 - U_2^2 \right) + \frac{1}{2} \rho A_2 \left(\frac{U_1 + U_2 + 2U_3}{4} \right) \left(\frac{U_1 + U_2}{2} \right)^2 + U_3^2 \]
(2.7)

Donde \(A_1 \) y \(A_2 \) son las áreas de los rotores, \(U_1, U_2 \) y \(U_3 \) son las velocidades en cada zona, \(P_{\text{entrada}} \), es la potencia del flujo de aire de entrada y se considera sin pérdidas y \(P_{\text{estela}} \), es la potencia del flujo después del rotor corriente arriba. Para obtener la potencia máxima de la velocidad corriente abajo, las velocidades pueden ser escritas como:

\[
U_2 = k_1 U_1
\]

\[
U_3 = k_2 U_1
\]

En donde,
\[
k_1 = \frac{9 + 4(A_1/A_2)}{23} \quad \text{y} \quad k_2 = \frac{1 + k_1}{6}
\]
Derivando la ecuación (2.7) y sustituyendo las velocidades se obtiene el coeficiente de potencia de la turbina de doble rotor contra-rotatoria por la ecuación (2.8):

\[C_p = \left[\frac{1}{2} (1 - k) + \frac{2}{27} \left(\frac{A_2}{A_1} \right) (1 + k_1) \right] (1 + k_1)^2 \]

(2.8)

Considerando que las áreas \(A_1 \) y \(A_2 = 1.2 \) y que \(k_1 = 0.6 \) y \(k_2 = 0.266 \). Se obtiene un coeficiente de potencia de \(C_p = 0.8766 \), esto indica que la turbina eólica de doble rotor contra-rotatoria puede extraer un 48% más de potencia de la energía cinética del aire [28].

La empresa Jeumont Industrie, (2000), patentó una turbina eólica con rotores contra-rotatorios. El propósito de su patente fue incrementar la potencia de salida y la producción de energía mediante un segundo rotor corriente abajo del primer rotor como se observa en la figura 2.21. Cada rotor de palas está acoplado por medio de trasmisión directa a dos generadores eléctricos, y la posición de las palas (26a, 26b) esta invertida para que giren en sentido contrario.

Figura 2.21 Diagrama de la turbina eólica de doble rotor patentada por Jeumont Industrie [29].

Las curvas de potencia para cada rotor de palas y en conjunto de doble rotor se muestran en la figura 2.22. Como se observa la figura 2.22 la curva de potencia de la turbina de doble rotor contra rotaria (26), es mayor que la curva de potencia del
rotor individual corriente arriba y corriente abajo (25) y (24) en las 4 zonas de la curva de potencia.

Figura 2.22 Curvas de potencia de la turbina eólica de doble rotor y un rotor [29].

Con la implementación del segundo rotor de palas acopladas a un segundo generador eléctrico montadas en la góndola hace posible recuperar la energía cinética del viento en aproximadamente un 60% a 70%. Esto no es posible en una turbina de un solo rotor aunque presente las mismas características aerodinámicas; el mismo perfil aerodinámico y el mismo diámetro de rotor [29].
CAPÍTULO III. METODOLOGÍA EXPERIMENTAL

En este capítulo se hace la descripción de la instalación: el túnel de viento (sección de succión y sección de presión), la instrumentación utilizada, la turbina eólica de doble rotor contra-rotatoria y la metodología experimental donde se describe con diagramas de flujo y procedimientos las actividades a realizar en este trabajo.
3.1 DESCRIPCIÓN DE LA INSTALACIÓN EXPERIMENTAL

Se utilizó el túnel de viento de velocidad baja ubicado en el LABINTHAP® del Instituto Politécnico Nacional (Unidad Profesional Adolfo López Mateos, Ciudad de México). La instalación consiste en la sección de pruebas de succión y su módulo para experimentos en álabes y la sección de pruebas de presión.

3.1.1 SECCIÓN DE PRESIÓN DEL TÚNEL DE VIENTO

La sección de pruebas de presión en la descarga del túnel de viento (figura 3.1), está construida de acrílico de 10 mm de espesor y lámina de 3 mm de espesor. Esta sección se integra por un ducto vertical (silenciador) de 1.00 m por 1.25 m y una longitud de 1.00 m y un ducto horizontal de sección rectangular de 1.00 m por 1.25 m con una longitud de 5.20, ambos ductos están acoplados por medio de un codo de 90° que posee dos deflectores de flujo. En la unión del codo y el ducto horizontal, se tiene una junta flexible, para reducir las vibraciones en esta sección de pruebas. La velocidad máxima en esta zona es de 36 m/s [30].

![Figura 3.1 Diagrama de la sección de presión del túnel de viento.](image)

Esta sección de pruebas tiene un rectificador de flujo de forma circular colocado a 2.20 m de la descarga del codo, para mejorar el comportamiento del flujo de aire en esta zona. La generación del flujo de aire en el túnel de viento se hace con un ventilador centrífugo de presión media, marca VENTURI, modelo CIMO-9X-125 (figura 3.2). El ventilador es accionado por un motor trifásico tipo jaula de ardilla, marca SIEMENS de 74.6 kW (100 hp) de potencia máxima de salida a par constante y a 1775 rpm.
Figura 3.2 Motor eléctrico, variador de velocidad y ventilador centrífugo.

3.1.2 SECCIÓN DE SUCCIÓN DEL TÚNEL DE VIENTO

La sección de pruebas de succión como la que se muestra en la figura 3.3, está construida en acrílico de 1 cm de espesor, y la conforman 3 módulos de 1 m de longitud cada uno. Los módulos tienen una sección transversal rectangular de 0.6 m por 0.8 m. La sección de pruebas de succión alcanza una velocidad máxima de 65 m/s y tiene un nivel de turbulencia menor a 0.6% para el intervalo de velocidad de 5 m/s a 40 m/s. Toda la sección de pruebas esta reforzada con una estructura con forma de prisma rectangular de solera de fierro de 0.00635 m de espesor [31].

Figura 3.3 Diagrama de la sección de pruebas de succión del túnel de viento.
3.1.2 INSTRUMENTACIÓN

Para la parte de medición se utilizó un sistema de anemometría de hilo caliente (de investigación e industrial) para la obtención de las velocidades y una estación meteorológica para el monitoreo de las condiciones ambientales en el laboratorio como; la temperatura y presión. Ambos sistemas se describen a continuación.

Estación meteorológica.

La figura 3.4 y la tabla 3.1 muestran las características de la estación meteorológica marca Digiquartz® modelo met3 usada para el monitoreo en las variables de presión barométrica, temperatura y humedad relativa en la instalación [32].

![Figura 3.4 Estación meteorológica](image)

Tabla 3.1 Características de la estación meteorológica [32].

<table>
<thead>
<tr>
<th>Variable</th>
<th>Intervalo de Medición</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión (kPa)</td>
<td>620 – 1100</td>
<td>± 0.08</td>
</tr>
<tr>
<td>Temperatura (°C)</td>
<td>-50 – 60</td>
<td>±0.1</td>
</tr>
<tr>
<td>Humedad Relativa (%)</td>
<td>0 – 100</td>
<td>±2</td>
</tr>
</tbody>
</table>

Anemómetro de hilo caliente industrial.

Se utilizó un anemómetro térmico de hilo caliente industrial marca EXTECH® (figura 3.5), para realizar mediciones puntuales de velocidad. Este instrumento permite la medición de velocidad del aire en un intervalo de velocidad que se muestra en la tabla 3.2. Cuenta con una sonda de acero inoxidable de 1.27 cm de diámetro, longitud de 95 cm y una pantalla LCD donde se muestran las lecturas. En la tabla 3.2 se proporcionan las especificaciones correspondientes a la medición de velocidad según el fabricante [33].
Figura 3.5 Anemómetro de hilo caliente industrial marca EXTECH®.

Tabla 3.2 Especificaciones técnicas del anemómetro térmico marca EXTECH® [33];

<table>
<thead>
<tr>
<th>Unidades</th>
<th>Intervalo</th>
<th>Resolución</th>
<th>Exactitud</th>
</tr>
</thead>
<tbody>
<tr>
<td>m/s</td>
<td>0.2 m/s a 20 m/s</td>
<td>0.1 m/s</td>
<td>±(3%+0.3 m/s)</td>
</tr>
<tr>
<td>km/h</td>
<td>0.7 km/h a 72 km/h</td>
<td>0.1 km/h</td>
<td>±(3%+1.1 km/h)</td>
</tr>
<tr>
<td>pie/min</td>
<td>40 pie/min a 3940 pie/min</td>
<td>1 pie/min</td>
<td>±(3%+59 pie/min)</td>
</tr>
<tr>
<td>MPH</td>
<td>0.5 MPH a 45 MPH</td>
<td>0.1 MPH</td>
<td>±(3%+0.67MPH)</td>
</tr>
<tr>
<td>nudos</td>
<td>0.4 nudos a 31 nudos</td>
<td>0.1 nudos</td>
<td>±(3%+0.58nudos)</td>
</tr>
</tbody>
</table>

El proceso de calibración y la curva de calibración obtenida para este anemómetro se describen en el apéndice A.

Anemómetro de hilo caliente de investigación.

El anemómetro de hilo caliente empleado en este trabajo es de la marca DANTEC®, modelo 90N10. Opera a temperatura constante [34]. El sistema de medición del anemómetro de hilo caliente de investigación es un conjunto compuesto por sondas y sus sistemas de conexión y sujeción, una unidad de calibración, una unidad de control y adquisición de datos y una unidad de posicionamiento.

En la figura 3.6 se muestra un diagrama de los componentes principales del sistema de anemometría de hilo caliente con modo de operación a temperatura constante. Se utiliza una computadora con el software StreamWare Pro v5.10, para controlar todo el sistema de medición.
El gabinete del anemómetro tiene tres módulos de medición que permiten medir si se requiere simultáneamente las tres componentes de velocidad, se le conecta también un módulo de calibración, además cuenta con una entrada para la sonda de temperatura, la cual permite corregir los datos del anemómetro con respecto de la temperatura dentro del flujo cuando ocurren cambios significativos de esta variable del fluido [34]. A continuación se explican de forma específica la unidad de calibración, la unidad de posicionamiento y las sondas que utiliza el equipo:

Unidad de calibración

La unidad está compuesta por el módulo de calibración que existe dentro del gabinete y por la unidad de flujo conectada a dicho módulo mediante un cable de transferencia de datos. Los parámetros necesarios para el proceso de calibración se especifican en la computadora por medio del software StreamWare. La unidad de flujo cuenta con una serie de toberas de Laval las cuales entregan un flujo másico constante, estable e independiente de la presión.

Existen 4 toberas con diferentes áreas que cubren un intervalo de velocidad de 0.02 m/s hasta Mach = 1 (tabla 3.3). Las toberas tienen formas elípticas para obtener un desarrollo de la capa límite muy pequeño y asegurar un perfil de velocidad plano [34].
Tabla 3.3 Descripción de toberas utilizadas por la unidad de calibración [34].

<table>
<thead>
<tr>
<th>Tobera</th>
<th>Diámetro [mm]</th>
<th>Sección transversal [mm²]</th>
<th>Velocidad [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>42</td>
<td>1400</td>
<td>0.02 a 0.5</td>
</tr>
<tr>
<td>I</td>
<td>12</td>
<td>120</td>
<td>0.5 a 60</td>
</tr>
<tr>
<td>II</td>
<td>8.7</td>
<td>60</td>
<td>5 a 120</td>
</tr>
<tr>
<td>III</td>
<td>5</td>
<td>20</td>
<td>5 a 1 Mach</td>
</tr>
</tbody>
</table>

La unidad de flujo opera mediante el suministro de aire entregado por un compresor con presiones que deben estar entre 0.7 MPa y 0.9 MPa; lo anterior crea un flujo libre sobre el cual se monta la sonda para su calibración, el equipo descrito se ilustra en la figura 3.7. Para obtener las variables necesarias para calcular la velocidad, la unidad de calibración tiene los siguientes sensores: un transductor de presión diferencial de 0 Pa – 5000 Pa, un transductor de presión absoluta de 70 kPa – 200 kPa, un transductor de temperatura con un intervalo de 0 °C – 50 °C.

La calibración de las sondas debe llevarse a cabo teniendo de referencia un campo de flujo en el cual se conozca la magnitud y la dirección de la velocidad, además el campo de velocidad debe de ser uniforme en la zona en donde se encuentre inmersa la sonda y el nivel de turbulencia debe ser menor al 0.5%; todo lo anterior lo proporciona de manera suficiente la unidad de flujo, lo cual garantiza una calibración correcta.

Unidad de posicionamiento.

Las sondas se desplazan en la sección de pruebas del túnel de viento mediante una unidad de posicionamiento con movimiento en los tres ejes (es posible también utilizar esta unidad en coordenadas cilíndricas y esféricas), lo cual permite efectuar las mediciones necesarias prácticamente en cualquier arreglo (figura 3.8). El
desplazamiento en cada eje se realiza mediante un motor a pasos acoplado directamente a un tornillo de avance de precisión.

La unidad de posicionamiento es marca DANTEC®, modelo 41T50. Sus características son las siguientes: desplazamiento en los ejes X y Y de 590 mm, en el eje Z de 690 mm; resolución en X y Y es de 12.5 μm y en Z de 6.25 μm; la velocidad de desplazamiento en X y Y de 40 mm/s y en el eje Z de 25 mm/s; la capacidad de carga máxima es de 30 kg [34].

Figura 3.8 Unidad de posicionamiento.

Sondas

Las sondas que utiliza el HWA tienen grandes ventajas como lo son: un tiempo de respuesta rápido, resolución espacial alta, intervalo de medición de velocidades grande, proporcionan una señal continua y producen una mínima perturbación en el flujo [34]. Las sondas de hilo caliente pueden ser del tipo miniatura o del tipo con recubrimiento de oro. La sonda empleada tiene la denominación 55P11 como se observa en la figura 3.9 y se le conoce como sonda de propósito general.

Figura 3.9 Sonda 55P11 [34].
3.2 DESCRIPCIÓN DE LA TURBINA EÓLICA

Esta turbina tiene como característica un doble rotor de palas (corriente arriba y corriente abajo) con tres palas por rotor como se observa en la figura 3.10 acopladas al generador eléctrico por transmisión directa. En este caso se modificó el generador eléctrico para que el devanado del estator fuese móvil y rotara, y así se pudo acoplar un segundo rotor. El diámetro de los rotores es el mismo de 1.20 m y la de separación entre rotores de 0.30 m [35].

![Turbina eólica de doble rotor contra-rotatoria](image)

Figura 3.10 Turbina eólica de doble rotor contra-rotatoria [35].

3.2.1 PALAS

Las palas del rotor corriente arriba son del perfil aerodinámico NACA 2412 [36] como se muestra en la figura 3.11 con una longitud de cuerda en la punta de 2 cm y en la raíz de 13 cm. En el rotor corriente abajo, las palas son de perfil NREL S822 [37], la geometría se muestra en la figura 3.12 tiene una longitud de cuerda en la punta de 2.8 cm y en la raíz de 11.6 cm. Las coordenadas y curvas polares de los perfiles aerodinámicos se encuentran en el anexo 1.
3.2.2 GENERADOR ELÉCTRICO

El generador eléctrico utilizado en esta turbina eólica fue un dínamo de corriente continua de marca BOSCH® como el que se observa en la figura 3.13. La potencia de salida nominal es de 400 W a una velocidad angular de 900 rpm y una potencia máxima de 652 W a 3000 rpm. En la tabla 3.4 se detallan las características eléctricas del generador [38].
Figura 3.13 Generador eléctrico marca BOSCH®.

<table>
<thead>
<tr>
<th>RPM</th>
<th>Tensión</th>
<th>Corriente</th>
<th>Potencia generada</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>13-14.5 V</td>
<td>30</td>
<td>400 W</td>
</tr>
<tr>
<td>3000</td>
<td>12.7 14.5 V</td>
<td>45</td>
<td>652 W</td>
</tr>
</tbody>
</table>

Con la modificación mecánica realizada al generador eléctrico (estator rotatorio), se altera un parámetro eléctrico que influye en el aumento de la potencia eléctrica de salida. Este parámetro en la tensión de generación se obtiene por medio de la ecuación (3.1) [39].

\[V_g = k\Phi\omega \ [V] \] \hspace{1cm} (3.1)

Donde \(k \) es una constante de diseño del generador, \(\Phi \) es el flujo por polo en Weber [Wb] y \(\omega \) es la velocidad relativa del rotor con respecto al estator [rad/s]. Al modificar el estator para que también pueda rotar, se aumenta la velocidad relativa entre rotor y estator, y por ende se tiene una mayor tensión de generación [39].

Al aumentar la tensión de generación y con la corriente en la carga eléctrica, se tiene una mayor potencia en comparación con el estator fijo. Para calcular la potencia eléctrica se utiliza la ecuación (3.2):

\[P_{eléctrica} = V_g I \ [W] \] \hspace{1cm} (3.2)
Donde P, es la potencia eléctrica, I, es la corriente de eléctrica y V_g, es la tension de generación.

3.2.3 TRANSMISIÓN

El acoplamiento de los rotores de palas de la turbina al generador eléctrico es por transmisión directa como se muestra en la figura 3.14. El rotor corriente arriba se acopló directamente al rotor del generador eléctrico y el rotor corriente abajo se acopló al estator para hacer girar ambas bobinas y así obtener mayor potencia por medio del incremento de la suma de la velocidad angular.

![Diagrama del acoplamiento de los rotores al generador eléctrico.](image)

Figura 3.14 Diagrama del acoplamiento de los rotores al generador eléctrico.

3.2.4 GÓNDOLA Y NARIZ

Es el armazón principal y la carcasa de la turbina eólica, se sitúa en la parte superior de la torre y en su interior se encuentran los elementos eléctricos y mecánicos necesarios para convertir el par del rotor de palas en energía eléctrica. Se encuentra unida a la torre y al rotor de palas por el eje principal que transmite la fuerza del viento al generador eléctrico. La geometría de la góndola se determina de acuerdo la colocación de sus componentes.

La nariz es un elemento aerodinámico que se sitúa de frente a la dirección de viento sobresaliendo de la zona de unión entre las palas y el buje. Su papel consiste en
redireccionar el viento de la parte frontal del rotor y a la vez evitar turbulencias en la parte frontal de éste. En este trabajo la góndola tiene una forma cilíndrica como se observa en la figura 3.15 y se utilizaron dos narices, una para cada rotor de palas. La geometría de las narices es descrita por medio de las ecuaciones se observan en la figura 3.16, así como sus longitudes.

![Góndola de la turbina eólica de doble rotor contra-rotatoria.](image)

Figura 3.15 Góndola de la turbina eólica de doble rotor contra-rotatoria.

![Narices de la turbina eólica de doble rotor contra-rotatoria.](image)

Figura 3.16 Narices de la turbina eólica de doble rotor contra-rotatoria.

Nariz A

Ecuación: $y = \sqrt{\rho^2 - (1-x)^2} + R - \rho$

Nariz B

Ecuación: $y = \left[\frac{5}{8}\right]^\pi \left[1 - \left(\frac{3}{4}\right)^\pi\right]^{1/\pi}$
3.3 METODOLOGÍA EXPERIMENTAL

El desarrollo experimental del presente trabajo (figura 3.17) se divide en cuatro etapas principales:

1. Caracterización de la sección de pruebas de presión, por medio de mediciones con el anemómetro de hilo caliente industrial para obtener las velocidades promedio y la intensidad de turbulencia.

2. Caracterización del chorro de la sección de presión por medio de mediciones con el anemómetro de hilo caliente industrial para obtener perfil de velocidad e intensidad de turbulencia.

3. Obtención del campo de flujo en la estela de la góndola (perfiles de velocidad e intensidad de turbulencia) y el coeficiente de arrastre, por medio de las ediciones con el anemómetro de hilo caliente de investigación. Visualización de flujo por medio del generador de humo y con el sistema de iluminación por láser.

4. Evaluación de la turbina eólica en el chorro de la sección de presión. Inicialmente con un rotor y después con doble rotor contra-rotatorio.

![Diagrama de flujo para la metodología general de la caracterización de la instalación y evaluación de la turbina eólica.](image-url)
3.3.1 METODOLOGÍA PARA CARACTERIZAR LA SECCIÓN DE PRUEBAS DE PRESIÓN

Para la caracterización de la sección de pruebas de presión (velocidades promedio e intensidad de turbulencia), se presenta el diagrama de flujo (figura 3.18) y una serie de actividades para llevar a cabo esta metodología.

Figura 3.18 Diagrama de flujo para caracterizar la sección de pruebas de presión del túnel de viento.

1. Registrar las condiciones ambientales; presión atmosférica, temperatura y humedad relativa dentro de la instalación.
2. Dividir la sección de pruebas de presión en 24 puntos de medición (figura 3.19) bajo la norma AMCA 203-90 y calcular diámetro equivalente del ducto mediante la ecuación (3.3) [40].

\[
D_e = \sqrt{\frac{4AB}{\pi}}
\]

(3.3)

![Imagen de la sección de pruebas de presión con puntos de medición](image1)

Figura 3.19 Puntos de medición en la sección de pruebas de presión.

3. Instalar y medir con el anemómetro de hilo caliente la velocidad en los puntos del plano de medición ubicado a 2D (figura 3.20) después del rectificador de flujo.

![Imagen del plano de medición con 2D](image2)

Figura 3.20 Plano de medición en la sección de pruebas de presión.
4. Realizar 12 mediciones cada 10 segundos en el punto de medición y calcular la velocidad promedio e intensidad de turbulencia con las mediciones realizadas.

3.3.2 METODOLOGÍA PARA CARACTERIZAR EL CHORRO DE LA SECCIÓN DE PRESIÓN

Para la caracterización del chorro de la sección de presión (mediciones de velocidad para trazar el perfil de velocidad y calcular intensidad de turbulencia), se desarrolló una metodología experimental a través de un diagrama de flujo (figura 3.21) y una serie de actividades.

Figura 3.21 Diagrama de flujo para caracterizar el chorro de la sección de presión.
1. Registrar las condiciones ambientales; presión atmosférica, temperatura y humedad relativa dentro de la instalación.

2. Instalar el anemómetro de hilo caliente industrial la velocidad en los puntos de del plano de medición ubicado a 0.5D (figura 3.22) después del labio del ducto.

3. Realizar 12 mediciones cada 10 segundos en el punto de medición y calcular la velocidad promedio e intensidad de turbulencia.

4. Con los valores de velocidad del flujo en los puntos de medición, trazar los perfiles de velocidad en el plano de medición.

3.3.3 METODOLOGÍA PARA OBTENER CAMPO DE FLUJO EN LA ESTELA DE GÓNDOLA Y COEFICIENTE DE ARRASTRE

Para obtener el campo de flujo en la estela de la góndola (perfil de velocidad e intensidad de turbulencia) y el coeficiente de arrastre en las dos configuraciones de la góndola se desarrolló se desarrolló una metodología experimental a través de un diagrama de flujo (figura 3.23) y una serie de actividades que se describen a continuación.
Figura 3.23 Diagrama de flujo para obtener el campo de flujo de la estela y el coeficiente de arrastre de la góndola.

1. Limpiar la sección de pruebas de succión para eliminar el polvo u objetos ajenos al experimento que puedan interferir con las pruebas o dañar al equipo de medición.

2. Registrar las condiciones ambientales; presión atmosférica, temperatura y humedad relativa dentro de la instalación.

3. Calibrar la sonda 5P11 con el sistema de autocalibración del sistema del hilo caliente en un intervalo de velocidad de 0.5 m/s a 21 m/s en 20 puntos. Los datos de calibración de la sonda se encuentra en el anexo B.
4. Instalar la góndola en uno de los módulos de la sección de pruebas de succión, colocarla al centro del módulo y posicionar la sonda de hilo caliente corriente debajo de la góndola (figura 3.24) a una distancia de 1D (tomando como diámetro característico el diámetro de la góndola de 0.15 m).

![Figura 3.24 Instalación de la góndola en la sección de pruebas de succión.](image)

5. Definir frecuencia, tiempo de muestreo de las mediciones con la sonda. La frecuencia se estableció en 30 kHz con tiempo de muestreo de 10 segundos, lo que resulta en un total de 150 000 datos por cada punto de medición. La matriz de mediciones con el posicionador de la sonda de hilo caliente, consta de 30 puntos de medición sobre el eje X desde -150 mm hasta 150 mm, donde el origen es el centro de la góndola.

6. Establecer las velocidades de operación (3 m/s, 12 m/s y 20 m/s) en la sección de pruebas mediante la variación de frecuencia del motor eléctrico e iniciar las mediciones con la sonda de hilo caliente.

7. Reducir datos para obtener velocidades promedio e intensidad de turbulencia en cada punto de medición, trazar los perfiles de velocidad e intensidad de turbulencia y calcular el arrastre para cada velocidad de operación.

8. Cambiar la configuración de la góndola. La primera configuración consistió en utilizar la nariz A como borde de ataque y la nariz B como borde de salida como se observa en la figura 3.25. La configuración 2 se invirtió las posiciones, la nariz B como borde de ataque y la nariz A como borde de salida (figura 3.25). Repetir los pasos del 2 al 7.
Figura 3.25 Configuraciones de la góndola de la turbina eólica.

3.3.4 METODOLOGÍA PARA LA VISUALIZACIÓN DE FLUJO EN LA GÓNDOLA

Se presenta la metodología experimental para la visualización de flujo en la góndola a través de un diagrama de flujo (figura 3.26) y se describen y una serie de actividades.

Figura 3.26 Diagrama de flujo para la visualización de flujo en la góndola.
1. Preparar el generador de humo (marca DANTEC® modelo 10D90) como el que se muestra en la figura 3.27, el cual funciona con corriente eléctrica alterna de 230 V, 6.3 A y 50 – 60 Hz. Se utiliza como líquido aceite mineral refinado del petróleo, Shell Ondina 917 [41].

![Figura 3.27 Generador de humo blanco.](image)

2. La boquilla del generador de humo se posiciona en un plano colineal al que forman el borde de entrada de la góndola a una distancia de 0.20 m corriente arriba del borde. Se energiza el generador y se establece una velocidad en el túnel de viento para que el flujo de aire mueva el humo a través de la góndola como se observa en la figura 3.28.

![Figura 3.28 Flujo de humo atravesando la góndola.](image)

3. Colocar el sistema de iluminación por láser (figura 3.29) debajo de la sección de pruebas que consta de 4 láseres individuales de 300 mW que proyectan una plano de iluminación de longitud de onda de 532 nm. Estos láseres están colocados en serie para ampliar el plano de iluminación.
Figura 3.29 Sistema de iluminación laser.

4. Energizar el sistema de iluminación por láser para iluminar un plano axial como se observa en la figura 3.30 y así resaltar el humo blanco para una mejor captura fotográfica de los vórtices formados dentro de la estela y establecer una velocidad de referencia de 0.2 m/s.

Figura 3.30 Plano de iluminación axial para la visualización.

5. Capturar la visualización de flujo por medio de una cámara profesional a una velocidad de captura de 1/3 de segundo y seleccionar las fotografías donde se presente la mejor toma de la formación y desarrollo de los vórtices en la estela de la góndola. Cambiar configuración y repetir los pasos del 1 al 5.
3.3.5 METODOLOGÍA PARA EVALUAR LA TURBINA ÉÓLICA DE DOBLE ROTOR CONTRA-ROTATORIA

Para la evaluación experimental de la turbina eólica de doble rotor contra-rotatoria en el chorro, se desarrolló una metodología experimental a través de un diagrama de flujo (figura 3.31) y una serie de actividades. Esta evaluación se llevará a cabo inicialmente con la turbina eólica con un rotor y después con doble rotor, en el chorro de la sección de presión.
1. Instalar la turbina eólica a una distancia 0.5D (0.60 m) después del ducto de la sección de presión, inicialmente con un rotor.

2. Seleccionar la frecuencia del motor eléctrico para tener un intervalo de velocidad de 5 m/s hasta 20 m/s.
3. En cada intervalo de velocidad, medir la tensión de generación y la corriente eléctrica en la carga a través del sistema de cargas dinámicas (figura 3.32). Se utilizan como cargas eléctricas bombillas de 50 W a 12 V y para controlar el encendido y apagado de cada bombilla, o hilera de bombillas es mediante un interruptor.

![Diagrama esquemático del sistema de cargas dinámicas.](image)

Figura 3.32 Diagrama esquemático del sistema de cargas dinámicas.

4. Calcular la potencia eléctrica para cada intervalo de velocidad y graficar la curva de potencia. También calcular para cada intervalo de velocidad el coeficiente global de potencia y graficar la curva de eficiencia global.

5. Colocar el rotor corriente abajo en la turbina eólica e instalarla a una distancia 0.5D (0.60 m) después del ducto de la sección de presión, inicialmente con un rotor. Repetir los pasos 2, 3 y 4.

6. Identificar las velocidades de operación de la turbina eólica y medir con el anemómetro de hilo caliente industrial en los planos de medición (figura 3.33). Hacer 12 mediciones en cada punto cada 10 segundos del plano de medición.
7. Trazar los perfiles de velocidad en los planos de medición para la velocidad de arranque y velocidad nominal. La ubicación y el número de puntos y planos de medición se basaron en el trabajo de Sung, Tae-Soo y Ki-Wahn [23], tomando como diámetro característico el diámetro del rotor que es de 1.20 m.
En este capítulo se analizan los resultados obtenidos de la evaluación experimental de la turbina eólica de doble rotor contra rotatoria. Se analizó la visualización de flujo en la góndola con las diferentes geometrías de la nariz, así como perfiles de velocidad y turbulencia. También la comparación de curvas de potencia y de eficiencia de la evaluación con doble rotor contra rotatorio frente a un rotor convencional.
CAPÍTULO IV
ANÁLISIS DE RESULTADOS

4.1 CARACTERIZACIÓN DEL FLUJO EN LA SECCIÓN DE PRESIÓN

Se caracterizó la sección de pruebas del túnel de viento para conocer las condiciones del flujo a ciertas velocidades del viento. Estas velocidades fueron las tres velocidades de operación comunes en las turbinas eólicas (velocidad de arranque, velocidad nominal y velocidad de desconexión): 3 m/s, 12 m/s y 20 m/s.

Para establecer las velocidades de operación en la sección de pruebas de presión se encontró la relación de frecuencia del motor eléctrico del túnel de viento con la velocidad del flujo presentada en la tabla 4.1.

<table>
<thead>
<tr>
<th>Hz</th>
<th>V [m/s]*</th>
<th>Hz</th>
<th>V [m/s]*</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1.3</td>
<td>27</td>
<td>11.2</td>
</tr>
<tr>
<td>7</td>
<td>2.1</td>
<td>28</td>
<td>11.7</td>
</tr>
<tr>
<td>8</td>
<td>2.4</td>
<td>29</td>
<td>12.3</td>
</tr>
<tr>
<td>9</td>
<td>2.9</td>
<td>30</td>
<td>12.7</td>
</tr>
<tr>
<td>10</td>
<td>3.1</td>
<td>31</td>
<td>12.9</td>
</tr>
<tr>
<td>11</td>
<td>3.9</td>
<td>32</td>
<td>13.5</td>
</tr>
<tr>
<td>12</td>
<td>4.1</td>
<td>33</td>
<td>13.7</td>
</tr>
<tr>
<td>13</td>
<td>5.3</td>
<td>34</td>
<td>14.4</td>
</tr>
<tr>
<td>14</td>
<td>5.5</td>
<td>35</td>
<td>14.6</td>
</tr>
<tr>
<td>15</td>
<td>6.2</td>
<td>36</td>
<td>15.2</td>
</tr>
<tr>
<td>16</td>
<td>6.7</td>
<td>37</td>
<td>15.4</td>
</tr>
<tr>
<td>17</td>
<td>7.1</td>
<td>38</td>
<td>15.8</td>
</tr>
<tr>
<td>18</td>
<td>7.3</td>
<td>39</td>
<td>16.4</td>
</tr>
<tr>
<td>19</td>
<td>7.7</td>
<td>40</td>
<td>16.9</td>
</tr>
<tr>
<td>20</td>
<td>8.1</td>
<td>41</td>
<td>17.2</td>
</tr>
<tr>
<td>21</td>
<td>8.5</td>
<td>42</td>
<td>17.9</td>
</tr>
<tr>
<td>22</td>
<td>8.9</td>
<td>43</td>
<td>18.1</td>
</tr>
<tr>
<td>23</td>
<td>9.9</td>
<td>44</td>
<td>18.4</td>
</tr>
<tr>
<td>24</td>
<td>10.3</td>
<td>45</td>
<td>18.8</td>
</tr>
<tr>
<td>25</td>
<td>10.7</td>
<td>47</td>
<td>20</td>
</tr>
<tr>
<td>26</td>
<td>10.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Para la velocidad de arranque de 3 m/s, se estableció una frecuencia en el motor eléctrico para tener una velocidad promedio a esa velocidad. Se colocó el anemómetro de hilo caliente en cada punto de medición y se midió la velocidad conforme a la metodología presentada en el apartado 3.3.1 del capítulo III. Con estos datos se calculó la velocidad promedio y la intensidad de turbulencia. Los resultados se muestran en la tabla 4.2.
Como se observa en la tabla 4.2 a esta condición de velocidad del viento en la sección de pruebas de presión con una ligera variación de la velocidad con respecto a la velocidad promedio. La velocidad promedio a esta condición es de 3.2 m/s con una uniformidad de ±9% y la intensidad de turbulencia promedio es del 3.5%.

Para la segunda condición que corresponde a la velocidad nominal de 12 m/s, de igual forma se tomaron mediciones con el anemómetro de hilo caliente en los 24 puntos. A esta condición se calculó la velocidad promedio y la intensidad de turbulencia. Los resultados se muestran en la tabla 4.3.
A esta condición de velocidad del viento la velocidad promedio es de 12 m/s con una uniformidad del flujo de ±7% y la intensidad de turbulencia promedio es del 3.7%. En los puntos de mediciones inferiores y lateral izquierdo presentan una velocidad promedio de 11 m/s, menor a la velocidad promedio

Para la última condición que corresponde a la velocidad de desconexión de 20 m/s, en la tabla 4.4 presenta la velocidad promedio y la intensidad de turbulencia en cada uno de los 24 puntos de medición. Como se puede observar existe una mayor diferencia de velocidades que van desde 17 m/s a 20 m/s, y la intensidad de turbulencia es mayor que la velocidades de operación anteriores con más del 5%.

| Tabla 4.4 Velocidades promedio e intensidad de turbulencia para la velocidad de desconexión. |
|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| U prom [m/s] |
19.2	18.6	17.9	17.3
20.5	19.7	18.6	18.2
20.8	20.2	19.2	18.7
21.2	20.5	19.9	18.5
21.4	20.8	20.8	18.7
21.0	20.3	19.9	19.2

A esta condición de velocidad del viento la velocidad promedio a esta condición es de 19.9 m/s con una uniformidad de ±10% y la intensidad de turbulencia promedio es del 5.4%. Con la caracterización en la sección de pruebas de presión a las tres velocidades de operación, el flujo de viento presentó condiciones de velocidad promedio y de intensidad de turbulencia como las que se encuentran en zonas urbanas y zonas rurales.
4.2 CARACTERIZACIÓN DEL CHORRO DE LA SECCIÓN DE PRESIÓN

Otra forma de evaluar turbinas eólicas en túneles de viento, es instalándolas en el chorro. Se caracterizó el chorro a las tres velocidades de operación de: 3 m/s, 12 m/s y 20 m/s. Se colocó el anemómetro de hilo caliente a una distancia de 0.5D (tomo como referencia el diámetro del rotor) para hacer mediciones en 10 puntos de medición en el eje vertical en medio del túnel de viento. Los perfiles a las tres velocidades de operación se observan en la figura 4.1.

Para 3 m/s se trazó el perfil de velocidades en el plano como se observa en la figura 4.1. A esta condición de velocidad del viento, la velocidad promedio es de 3.5 m/s con una uniformidad de ±9% y la intensidad de turbulencia promedio es del 3.5%. Los puntos que no coinciden con el área presentan una disminución de velocidad debido a que se encuentran fuera del núcleo potencial del chorro.

Figura 4.1 Perfiles de velocidad para las velocidades de operación: 3 m/s, 12 m/s y 20 m/s.

La segunda condición de caracterización del chorro corresponde a la velocidad nominal de 12 m/s. Como se observa en el perfil de velocidad (figura 4.1), de igual forma que la condición anterior de 3 m/s, los puntos que coinciden con el área del
ducto se mantienen una ligera diferencia de velocidad principalmente en el punto de medición no. 6 indicando que no está completamente desarrollado el perfil. Además a esta condición el flujo presenta una uniformidad de ±5% y la intensidad de turbulencia es del 8.4%.

Para la velocidad de desconexión de 20 m/s, el perfil de velocidad (figura 4.1), presenta en los puntos correspondientes al área del ducto principalmente en los puntos 6 y 7, una diferencia de velocidad de 2 m/s con respecto a los puntos 4 y 5 indicando que el perfil no se encuentra desarrollado. A esta condición de velocidad el flujo presenta una uniformidad de ±10% y la intensidad de turbulencia es del 9.2%.

Comparando las velocidades de la caracterización de la sección de pruebas con la del chorro, estas indican que para las tres condiciones de flujo que corresponden a las tres velocidades de velocidad de las turbinas eólicas, el plano de medición y donde instalarían las turbinas eólica se encuentran en el núcleo potencial de chorro ya que mantienen las mismas velocidades que dentro de la sección de pruebas. Además que la intensidad de turbulencia está dentro del intervalo que se encuentra en campo [41].

4.3 PERFILES DE VELOCIDAD E INTENSIDAD DE TURBULENCIA Y COEFICIENTE DE ARRASTRE EN LA GÓNDOLA

Para conocer el comportamiento aerodinámico de la góndola de la turbina eólica se caracterizó a las tres velocidades de operación: 3 m/s, 12 m/s y 20 m/s obteniendo los perfiles de velocidad, perfiles de intensidad de turbulencia y el coeficiente de arrastre. El empleo del método de visualización con humo blanco es para visualizar los vórtices en la estela que se forma corriente abajo de la góndola de la turbina eólica y comprobar la baja o nula influencia de la geometría de la nariz y así validar con los datos experimentales el comportamiento aerodinámico de las narices.

Por medio de los perfiles de velocidad obtenidos a 1D en las dos configuraciones de la góndola (figura 4.2) se puede obtener el comportamiento del flujo y analizando las posiciones que abarca el área transversal de la góndola, es posible inferir cualitativamente el comportamiento aerodinámico. Los perfiles de velocidad muestran que a 3 m/s los perfiles de velocidad son casi semejantes indicando que la influencia de las narices a esa velocidad es casi nula.
En ambos perfiles la longitud transversal de la estela abarca las posiciones 60mm hasta -60mm indicando que la separación de flujo ocurrió en la longitud de la superficie de la góndola menor que en las otras condiciones de velocidad. Aunque la intensidad de turbulencia en la estela, en la condición 2 es ligeramente menor que la configuración 1 como se observa en la figura 4.3; teniendo en promedio 10% y en la condición 1 un promedio de 11.89%.

Para 12 m/s, en los perfiles de velocidad se observa que existe una variación en las velocidades. El perfil de velocidad de la configuración 2 presenta una ligera disminución de velocidad en las posiciones que abarca el área de la góndola indicando que en esta configuración la estela tiene una menor longitud axial a comparación de la configuración 1.

También se observa una ligera disminución de la longitud transversal de la estela a comparación de la condiciones de velocidad de 3 m/s, abarcando las posiciones de 50mm hasta –50 mm, debido a que el desprendimiento de flujo ocurrió en una longitud mayor en la superficie de la góndola. Además que la intensidad de...
turbulencia es menor en la configuración 2 del 4.93% en promedio, y en la configuración 2 es del 7.30% en promedio como se muestra en la figura 4.4.

De igual forma para 20 m/s, en los perfiles de velocidad se observa una variación de velocidades. En la configuración 2 se presentan una disminución de velocidad de 2 m/s en las posiciones que abarca la zona de estancamiento de la góndola indicando que en esta configuración la estela tiene una menor longitud axial que a comparación de la configuración 1. La longitud transversal de la estela presenta una ligera disminución a comparación de la anterior condición de velocidad, abarcando las posiciones de 40mm a -40mm, ya que el desprendimiento del flujo ocurrió en una longitud de la superficie mayor que en la condición anterior.

También se aprecia que en las posiciones fuera de la longitud transversal de la estela, los perfiles presentan perturbación, debido a que a esa condición de velocidad la góndola presentó vibraciones generando mayor perturbación al flujo. Al igual con la intensidad de turbulencia, la turbulencia de la estela es menor en la configuración 2 que corresponde a 4.20% en promedio que en comparación de la configuración donde la turbulencia promedio es del 6% (figura 4.5).

Figura 4.3 Perfiles de turbulencia a 3 m/s.
CAPÍTULO IV
ANÁLISIS DE RESULTADOS

Figura 4.4 Perfiles de turbulencia a 12 m/s.

Figura 4.5 Perfiles de turbulencia a 20 m/s.
Con los datos de las mediciones experimentales, velocidad corriente abajo en la góndola, la velocidad de referencia y las condiciones atmosféricas de la instalación, se obtuvieron los coeficientes de arrastre para las configuraciones de la góndola como se observa en la figura 4.6. Con esto se valida experimentalmente que la configuración 2 presenta menor arrastre en comparación de la configuración 1.

![Figura 4.6 Coeficiente de arrastre a diferentes No. De Reynolds.](image)

4.4 VISUALIZACIÓN DE FLUJO EN LA GÓNDOLA

Para corroborar los resultados experimentales, la visualización de flujo con el generador de humo también permite conocer el comportamiento aerodinámico de la góndola de la turbina eólica. Para ello se hace el análisis de la formación de los vórtices en la estela. En la figura 4.7 se observa desarrollo de los vórtices en la estela de la góndola con la configuración 1 en lapso de 2 segundos divididos en 9 secuencias de A hasta F.
Figura 4.7 Visualización de flujo a 0.2 m/s y un Re=4491 para la configuración 1.
Como se puede observar en la secuencia A de la figura 4.7, el vórtice se empieza a formar antes del primer plano (0.5D) y se desprende a partir del segundo plano (1D) que se aprecia en la secuencia C y se desprende completamente en el plano 4 (2D) de la secuencia D. Con esto se demuestra que el desprendimiento del flujo ocasionado por la capa límite ocurre en un punto anterior a comparación de la configuración 2 y esto indica que presenta un mayor arrastre. En la figura 4.8 se presenta la secuencia de formación y desprendimiento del vórtice en la estela con la configuración 2.

Figura 4.8 Visualización de flujo a 0.2 m/s y un Re=4540 para la configuración 2.
Para la configuración 2 se observa en la secuencia A y B, el vórtice se forma entre el plano 1 y el plano 2 y se desarrolla completamente después del plano 2 como se muestra en la secuencia D y se desprende completamente en el plano 3. Con la visualización hecha en esta configuración el vórtice se forma en un plano posterior al que se formó en la configuración 1, esto indica que el desprendimiento de flujo ocasionado por la capa límite ocurrió en un punto más alejado en la superficie de la góndola y esto se traduce en un menor arrastre provocado por la forma de la nariz del borde de entrada.

4.5 PERFILES DE VELOCIDAD EN LA TURBINA EÓLICA

La primera condición de velocidad del viento fue a 7 m/s correspondiente a la velocidad de arranque de la turbina eólica de doble rotor contra-rotatoria. Los perfiles de velocidad en los planos de medición y las velocidades en los puntos de medición se pueden observar en la figura 4.9.

Como se observa en la figura 4.9, el perfil de velocidad del plano 2 presenta una ligera disminución de velocidad 0.3 m/s en promedio. En el caso de los perfiles de velocidad en los planos 3 y 4 que están entre los dos rotores, se puede apreciar una ligera disminución de velocidad, ya que el rotor corriente arriba absorbe una parte de la energía cinética del aire y aunado a la velocidad angular de 1051 rpm, la velocidad del viento para el rotor corriente abajo disminuye.
Para la segunda condición, que corresponde a la velocidad nominal de 14 m/s para la turbina eólica de doble rotor contra-rotatoria, los perfiles de velocidad en los planos y las velocidades en los puntos de medición se observan en la figura 4.10.

Como se observa los perfiles de velocidad anteriores al rotor corriente arriba de la turbina eólica son uniformes. Los perfiles de velocidad de los planos 3 y 4 que están entre los dos rotores se puede apreciar que la velocidad disminuye, debido a que esta condición de viento la velocidad angular del rotor corriente arriba aumenta considerablemente (2417 rpm) en comparación de la condición anterior.

Por estar en el núcleo potencial del chorro, el comportamiento del flujo no varía considerablemente para que rotor corriente abajo no pierda energía cinética del viento, aunque existe una ligera disminución de velocidad debido a la velocidad angular del rotor corriente arriba, donde la disminución de la velocidad del flujo es más evidente a velocidades altas. Las velocidades de todos los puntos de medición se encuentran en el apéndice C.
4.6 POTENCIA ELÉCTRICA Y COEFICIENTE GLOBAL DE POTENCIA

En la tabla 4.5 se muestran los resultados obtenidos en la evaluación experimental de la turbina eólica con un rotor y mediante las ecuaciones para calcular la potencia eléctrica, la potencia disponible del viento y el coeficiente global de potencia. En la figura 4.11 se observa la curva de potencia a las diferentes velocidades del viento.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>480</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>559</td>
<td>2.6</td>
<td>1.96</td>
<td>5.096</td>
<td>112.423</td>
<td>4.126</td>
</tr>
<tr>
<td>7</td>
<td>620</td>
<td>5.1</td>
<td>2.66</td>
<td>13.566</td>
<td>178.524</td>
<td>4.931</td>
</tr>
<tr>
<td>8</td>
<td>741</td>
<td>5</td>
<td>5.26</td>
<td>26.3</td>
<td>266.485</td>
<td>5.214</td>
</tr>
<tr>
<td>9</td>
<td>824</td>
<td>6</td>
<td>5.83</td>
<td>34.98</td>
<td>379.428</td>
<td>6.470</td>
</tr>
<tr>
<td>10</td>
<td>880</td>
<td>6.6</td>
<td>6.16</td>
<td>40.656</td>
<td>520.478</td>
<td>7.811</td>
</tr>
<tr>
<td>11</td>
<td>1000</td>
<td>6.7</td>
<td>8.7</td>
<td>58.29</td>
<td>692.756</td>
<td>8.414</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
<td>7.5</td>
<td>9.73</td>
<td>72.975</td>
<td>899.386</td>
<td>8.114</td>
</tr>
<tr>
<td>13</td>
<td>1191</td>
<td>7.5</td>
<td>12.76</td>
<td>95.7</td>
<td>1143.490</td>
<td>8.369</td>
</tr>
<tr>
<td>14</td>
<td>1325</td>
<td>7.7</td>
<td>16.33</td>
<td>125.741</td>
<td>1428.192</td>
<td>9.120</td>
</tr>
<tr>
<td>15</td>
<td>1354</td>
<td>8</td>
<td>16.731</td>
<td>133.848</td>
<td>1756.613</td>
<td>7.620</td>
</tr>
<tr>
<td>16</td>
<td>1402</td>
<td>8</td>
<td>16.731</td>
<td>133.848</td>
<td>2131.878</td>
<td>6.278</td>
</tr>
<tr>
<td>17</td>
<td>1489</td>
<td>8</td>
<td>16.731</td>
<td>133.848</td>
<td>2557.108</td>
<td>5.234</td>
</tr>
<tr>
<td>18</td>
<td>1536</td>
<td>8</td>
<td>16.731</td>
<td>133.848</td>
<td>3035.428</td>
<td>4.410</td>
</tr>
<tr>
<td>19</td>
<td>1597</td>
<td>8</td>
<td>16.731</td>
<td>133.848</td>
<td>3569.959</td>
<td>3.749</td>
</tr>
<tr>
<td>20</td>
<td>1647</td>
<td>8</td>
<td>16.731</td>
<td>133.848</td>
<td>4163.824</td>
<td>3.215</td>
</tr>
</tbody>
</table>

Como se puede observar en la tabla 4.5 y en la curva de potencia de la figura 4.11, la velocidad de arranque corresponde a 6 m/s ya que esta velocidad existe una potencia útil de 5 W y las velocidades inferiores (debajo de 5 m/s) debido a la baja velocidad angular del generador eléctrico, menor a 559 rpm, en donde no se genera energía eléctrica.

También se aprecia en los datos de la tabla y en la curva de potencia que conforme aumenta la velocidad la potencia incrementa llegando hasta 14 m/s que corresponde a la velocidad nominal; en el caso de este generador eléctrico, se estableció como potencia nominal la potencia de 180 W. Por cuestiones de seguridad, con la potencia nominal establecida en 180 W se decidió considerar constante la potencia hasta la velocidad de desconexión de 20 m/s.
Los resultados obtenidos de la potencia eléctrica para la turbina eólica de doble rotor contra-rotatoria durante la evaluación experimental se muestran en la tabla 4.6, y la curva de potencia que se obtuvo se observa en la figura 4.12 donde se compara con la curva de potencia de la turbina eólica con un rotor.

Tabla 4.6 Evaluación de la turbina eólica de doble rotor.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>420</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>500</td>
<td>274</td>
<td>774</td>
<td>2.3</td>
<td>1.5</td>
<td>2.294</td>
<td>111.667</td>
<td>2.055</td>
</tr>
<tr>
<td>7</td>
<td>677</td>
<td>374</td>
<td>1051</td>
<td>2.5</td>
<td>2.9</td>
<td>4.821</td>
<td>177.322</td>
<td>2.719</td>
</tr>
<tr>
<td>8</td>
<td>790</td>
<td>467</td>
<td>1257</td>
<td>4.65</td>
<td>3.8</td>
<td>11.751</td>
<td>264.691</td>
<td>4.439</td>
</tr>
<tr>
<td>9</td>
<td>917</td>
<td>614</td>
<td>1531</td>
<td>4.44</td>
<td>4.9</td>
<td>14.468</td>
<td>376.875</td>
<td>3.839</td>
</tr>
<tr>
<td>10</td>
<td>920</td>
<td>625</td>
<td>1545</td>
<td>8.6</td>
<td>5.2</td>
<td>29.739</td>
<td>516.975</td>
<td>5.752</td>
</tr>
<tr>
<td>11</td>
<td>1017</td>
<td>646</td>
<td>1663</td>
<td>9.6</td>
<td>11.03</td>
<td>70.416</td>
<td>688.094</td>
<td>10.233</td>
</tr>
<tr>
<td>12</td>
<td>1103</td>
<td>737</td>
<td>1840</td>
<td>10.3</td>
<td>17.63</td>
<td>120.757</td>
<td>893.333</td>
<td>13.518</td>
</tr>
<tr>
<td>13</td>
<td>1131</td>
<td>810</td>
<td>1941</td>
<td>12.9</td>
<td>19.6</td>
<td>168.139</td>
<td>1135.794</td>
<td>14.804</td>
</tr>
<tr>
<td>14</td>
<td>1253</td>
<td>1164</td>
<td>2417</td>
<td>13.5</td>
<td>27.3</td>
<td>245.086</td>
<td>1418.579</td>
<td>17.277</td>
</tr>
<tr>
<td>15</td>
<td>1304</td>
<td>1282</td>
<td>2586</td>
<td>14.3</td>
<td>28.9</td>
<td>274.825</td>
<td>1744.791</td>
<td>15.751</td>
</tr>
<tr>
<td>16</td>
<td>1480</td>
<td>1325</td>
<td>2805</td>
<td>14.3</td>
<td>28.9</td>
<td>274.825</td>
<td>2117.530</td>
<td>12.979</td>
</tr>
<tr>
<td>17</td>
<td>1563</td>
<td>1408</td>
<td>2971</td>
<td>14.3</td>
<td>28.9</td>
<td>274.825</td>
<td>274.825</td>
<td>2539.898</td>
</tr>
<tr>
<td>18</td>
<td>1615</td>
<td>1523</td>
<td>3138</td>
<td>14.3</td>
<td>28.9</td>
<td>274.825</td>
<td>3014.998</td>
<td>9.115</td>
</tr>
<tr>
<td>19</td>
<td>1701</td>
<td>1602</td>
<td>3303</td>
<td>14.3</td>
<td>28.9</td>
<td>274.825</td>
<td>3545.932</td>
<td>7.750</td>
</tr>
<tr>
<td>20</td>
<td>1805</td>
<td>1710</td>
<td>3515</td>
<td>14.3</td>
<td>28.9</td>
<td>274.825</td>
<td>4135.800</td>
<td>6.645</td>
</tr>
</tbody>
</table>
Con los resultados de la tabla 4.5 y con la curva de potencia de la figura 4.12 para la turbina eólica de doble rotor, las velocidades de operación de la turbina eólica de doble rotor contra-rotatoria, quedan establecidas en: 7 m/s para la velocidad de arranque con una potencia de 4.8 W, 15 m/s para la velocidad nominal y 20 m/s para la velocidad de desconexión. La potencia máxima que se obtuvo fue de 275 W que indica un incremento del 52% a comparación la turbina de un rotor en comparación de un solo rotor.

En la figura 4.12 se muestra la curva de potencia para la turbina de doble rotor contra-rotatoria y la curva de potencia turbina de un solo rotor, se observa que existe un incremento considerable de la potencia a partir de 10 m/s y se valida experimentalmente que utilizando un segundo rotor existe un incremento de potencia eléctrica ya que al aumentar la velocidad relativa entre rotor y estator en el generador eléctrico la tensión de generación es mayor como se muestra en la tabla 4.6. En la tabla 4.6 se muestra el incremento porcentual de potencia de la turbina eólica con doble rotor en comparación con la potencia de la turbina con un rotor.
En cuanto al coeficiente global de potencia (Ce) para ambas turbinas eólicas (figura 4.13) se observa la comparación de la eficiencia para la turbina de doble rotor contra-rotatoria y la turbina de un rotor. Como se puede observar la eficiencia de la turbina de doble rotor es mayor con un eficiencia del 17% para 14 m/s a comparación de la turbina de un rotor que para la misma velocidad tiene una eficiencia del 9%, ya que el segundo rotor (corriente abajo) ayudó a aumentar la velocidad angular y por lo tanto mayor potencia eléctrica.

![Diagrama](image)

Figura 4.13 Coeficiente global de potencia de la turbina eólica de doble rotor y de un rotor.

Con el aumento de la potencia eléctrica, se obtiene un coeficiente global de potencia mayor del 46% en el intervalo de velocidades mostrado en la figura 4.13. También se observa que la mayor eficiencia se obtiene a una velocidad de 14 m/s (para ambas configuraciones). Después de 14 m/s por la pérdida aerodinámica debido al ángulo de diseño de las palas, la eficiencia decrece ya que los rotores no pueden extraer más energía cinética del viento y al aumento del coeficiente de arrastre.

Tabla 4.6 Incremento de potencia con doble rotor contra-rotatorio.

<table>
<thead>
<tr>
<th>Velocidad del viento [m/s]</th>
<th>Potencia [W] un rotor</th>
<th>Potencia [W] doble rotor</th>
<th>Incremento de potencia %</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>16.64</td>
<td>29.739</td>
<td>44.68</td>
</tr>
<tr>
<td>11</td>
<td>33.549</td>
<td>70.416</td>
<td>55.45</td>
</tr>
<tr>
<td>12</td>
<td>72.975</td>
<td>120.757</td>
<td>41.37</td>
</tr>
<tr>
<td>13</td>
<td>95.7</td>
<td>168.139</td>
<td>43.92</td>
</tr>
<tr>
<td>14</td>
<td>125.741</td>
<td>245.086</td>
<td>48.72</td>
</tr>
<tr>
<td>15</td>
<td>133.848</td>
<td>274.825</td>
<td>52</td>
</tr>
</tbody>
</table>

Promedio 41.2%
CONCLUSIONES.

Se evaluó aerodinámicamente y energéticamente una turbina eólica de doble rotor contra-rotatoria. Se realizaron pruebas experimentales de potencia variando la velocidad del viento para conocer su desempeño en condiciones de flujo no ideales y comparar los resultados con la evaluación hecha a la turbina eólica de un rotor y así tomarla como una solución viable para generación de energía eléctrica para consumo doméstico.

Con las mediciones realizadas en la góndola y con la visualización de flujo, se determinó que la configuración 2 de la góndola presentó un menor coeficiente de arrastre a las tres condiciones de velocidad un $C_D=0.237$ en promedio a comparación de la configuración 1 que presentó un $C_D=0.275$ y con la visualización en la configuración 2 el vórtice se forma en un plano posterior al que se formó en la configuración 1, esto indica que el desprendimiento de flujo ocasionado por la capa límite ocurrió en un punto más alejado en la superficie de la góndola.

Las pruebas experimentales con la turbina eólica de doble rotor contra-rotatoria dieron como resultado una potencia máxima de 274 W para 15 m/s, con lo que se demuestra que utilizando doble rotor para incrementar la velocidad relativa entre rotor y estator del generador eléctrico, se incrementa la potencia eléctrica a comparación de la turbina eólica de un rotor (convencional) que en la misma condición de viento la potencia eléctrica fue 133 W.

Con el aumento de la potencia eléctrica utilizando doble rotor, la eficiencia global de la turbina eólica incrementa teniendo una eficiencia máxima de 17% para 14 m/s a comparación de la turbina eólica de un rotor, ya que la eficiencia máxima del 9% para la misma velocidad del viento. No solo el incremento de eficiencia es evidente a la velocidad de máxima eficiencia, ya que la eficiencia promedio para todo el intervalo de operación donde se presenta incremento (10 m/s a 20 m/s) es del 46%.

Con estos resultados se demuestra que una turbina eólica de doble rotor contra-rotatoria es más eficiente y genera más energía eléctrica que una turbina eólica convencional de un rotor. Y así proponerla como una alternativa a las tecnologías convencionales de generación eléctrica para aplicaciones domésticas a partir de recursos renovables y que sea una solución para cubrir la demanda energética en el país en zonas urbanas y rurales siempre y cuando exista el recurso eólico necesario.
RECOMENDACIONES.

Se recomienda utilizar generadores eléctricos más eficientes a bajas velocidades angulares.

Modificar el diámetro de los rotores para captar más energía cinética del viento y así aumentar la potencia y eficiencia.

Modificar la separación axial de los rotores para conocer la distancia óptima en donde obtenga la mejor eficiencia.

Realizar un estudio de perfiles aerodinámicos para seleccionar y utilizarlos en este tipo de turbinas eólicas.
REFERENCIAS.

[8] Poole, D., (1980). Defining the flow field of an open-jet wind tunnel. EUA.

[34] DANTEC hot wire anemometry operation manual (2013). DANTEC Dynamics

[38] BOSCH. Manual de mantenimiento del generador eléctrico (1990)

[40] AMCA 203-90 (EUA). *Field performance measurement of fan systems*.

APÉNDICES Y ANEXOS

En este apartado se presentan en los apéndices los datos obtenidos durante la caracterización de la instalación, mediciones en la estela de la góndola y la evaluación de la turbina eólica. En los anexos se incluyen los datos de los perfiles aerodinámicos de las palas de la turbina eólica.
APÉNDICE A. PROCEDIMIENTO DE CALIBRACIÓN Y DEL ANEMÓMETRO DE HILO CALIENTE INDUSTRIAL.

1.- Energizar el equipo.

2.- Registrar condiciones atmosféricas dentro del laboratorio (presión, temperatura, humedad).

3.- Colocar la sonda de hilo caliente y el anemómetro industrial de acuerdo a la figura A.1.

4.- Establecer la velocidad deseada para cada intervalo de calibración (tabla A.1) y tomar mediciones de velocidad con ambos instrumentos.

5.- Repetir los pasos 3 y 4 para el anemómetro industrial.

6.- Calcular el error porcentual para cada intervalo de medición.

7. Obtener curva de calibración (figura A.2)

7.- Registrar condiciones atmosféricas finales.

8.- Desergenizar y apagar equipos.
Condiciones ambientales iniciales

<table>
<thead>
<tr>
<th>U Ref [m/s]</th>
<th>U med [m/s]</th>
<th>U cal (y*Umed) [m/s]</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>3.0</td>
<td>3.2</td>
<td>5.729</td>
</tr>
<tr>
<td>4.2</td>
<td>4.0</td>
<td>4.2</td>
<td>5.253</td>
</tr>
<tr>
<td>5.2</td>
<td>5.0</td>
<td>5.3</td>
<td>4.894</td>
</tr>
<tr>
<td>6.3</td>
<td>6.0</td>
<td>6.3</td>
<td>4.660</td>
</tr>
<tr>
<td>7.4</td>
<td>7.1</td>
<td>7.4</td>
<td>4.544</td>
</tr>
<tr>
<td>8.5</td>
<td>8.0</td>
<td>8.4</td>
<td>4.74</td>
</tr>
<tr>
<td>9.0</td>
<td>8.8</td>
<td>9.2</td>
<td>4.756</td>
</tr>
<tr>
<td>10.1</td>
<td>9.6</td>
<td>10.1</td>
<td>4.786</td>
</tr>
<tr>
<td>11.0</td>
<td>10.7</td>
<td>11.3</td>
<td>5.249</td>
</tr>
<tr>
<td>12.0</td>
<td>11.5</td>
<td>12.2</td>
<td>5.510</td>
</tr>
<tr>
<td>13.0</td>
<td>12.1</td>
<td>12.8</td>
<td>5.646</td>
</tr>
<tr>
<td>14.0</td>
<td>13.0</td>
<td>13.9</td>
<td>6.147</td>
</tr>
<tr>
<td>15.0</td>
<td>14.0</td>
<td>15.0</td>
<td>6.860</td>
</tr>
<tr>
<td>16.1</td>
<td>14.8</td>
<td>16.0</td>
<td>7.373</td>
</tr>
<tr>
<td>17.1</td>
<td>15.8</td>
<td>17.2</td>
<td>8.285</td>
</tr>
<tr>
<td>18.0</td>
<td>16.7</td>
<td>18.4</td>
<td>9.204</td>
</tr>
<tr>
<td>19.0</td>
<td>17.9</td>
<td>19.1</td>
<td>3.316</td>
</tr>
<tr>
<td>20.1</td>
<td>18.0</td>
<td>20.1</td>
<td>10.272</td>
</tr>
</tbody>
</table>

Figura A.1 Puntos de medición en la sección de pruebas de succión

Tabla A.1 Resultados de calibración del anemómetro EXTECH
Figura A.2 Curva de calibración del anemómetro de hilo caliente EXTECH
APÉNDICE B. DATOS DE CALIBRACIÓN DE LA SONDA DE HILO CALIENTE DE INVESTIGACIÓN

Figura B.1 Resultados de la calibración de la sonda de hilo caliente

Figura B.2 Resultados de la calibración de la sonda de hilo caliente
APÉNDICE C. RESULTADOS DE LA MEDICIÓN DE VELOCIDAD EN LA TURBINA EÓLICA.

Tabla C.1 Mediciones de velocidad en la turbina eólica a 7 m/s.

<table>
<thead>
<tr>
<th>No. Punto</th>
<th>Velocidad [m/s]</th>
<th>Velocidad [m/s]</th>
<th>Velocidad [m/s]</th>
<th>Velocidad [m/s]</th>
<th>Velocidad [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.15</td>
<td>---</td>
<td>---</td>
<td>2.9166</td>
</tr>
<tr>
<td>2</td>
<td>0.1916</td>
<td>0.725</td>
<td>---</td>
<td>---</td>
<td>2.6083</td>
</tr>
<tr>
<td>3</td>
<td>5.3383</td>
<td>6.0265</td>
<td>---</td>
<td>---</td>
<td>2.25</td>
</tr>
<tr>
<td>4</td>
<td>6.9256</td>
<td>6.8479</td>
<td>---</td>
<td>---</td>
<td>1.05</td>
</tr>
<tr>
<td>5</td>
<td>6.6461</td>
<td>6.4483</td>
<td>---</td>
<td>---</td>
<td>1.5</td>
</tr>
<tr>
<td>6</td>
<td>7.0921</td>
<td>6.9256</td>
<td>5.7046</td>
<td>5.1274</td>
<td>3.2071</td>
</tr>
<tr>
<td>7</td>
<td>7.5805</td>
<td>7.4029</td>
<td>6.7147</td>
<td>6.4372</td>
<td>5.7046</td>
</tr>
<tr>
<td>8</td>
<td>5.8045</td>
<td>5.936</td>
<td>6.5038</td>
<td>6.4927</td>
<td>6.0931</td>
</tr>
<tr>
<td>9</td>
<td>0.2916</td>
<td>1.0333</td>
<td>4.4503</td>
<td>4.4614</td>
<td>8.7904</td>
</tr>
<tr>
<td>10</td>
<td>0.0166</td>
<td>0.2333</td>
<td>0.7166</td>
<td>1.5881</td>
<td>0.1324</td>
</tr>
</tbody>
</table>

Tabla C.2 Mediciones de velocidad en la turbina eólica a 14 m/s.

<table>
<thead>
<tr>
<th>No. Punto</th>
<th>Velocidad [m/s]</th>
<th>Velocidad [m/s]</th>
<th>Velocidad [m/s]</th>
<th>Velocidad [m/s]</th>
<th>Velocidad [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4</td>
<td>0.15</td>
<td>---</td>
<td>---</td>
<td>5.32</td>
</tr>
<tr>
<td>2</td>
<td>0.9</td>
<td>0.725</td>
<td>---</td>
<td>---</td>
<td>5.093</td>
</tr>
<tr>
<td>3</td>
<td>11.3878</td>
<td>11.7097</td>
<td>---</td>
<td>---</td>
<td>5.25</td>
</tr>
<tr>
<td>4</td>
<td>14.7511</td>
<td>14.3182</td>
<td>---</td>
<td>---</td>
<td>2.102</td>
</tr>
<tr>
<td>5</td>
<td>14.3838</td>
<td>13.5523</td>
<td>---</td>
<td>---</td>
<td>6.742</td>
</tr>
<tr>
<td>6</td>
<td>15.3949</td>
<td>14.6956</td>
<td>11.9428</td>
<td>11.3434</td>
<td>10.571</td>
</tr>
<tr>
<td>8</td>
<td>12.3091</td>
<td>12.4867</td>
<td>12.8823</td>
<td>12.8863</td>
<td>12.1236</td>
</tr>
<tr>
<td>9</td>
<td>1.025</td>
<td>1.0333</td>
<td>8.9236</td>
<td>10.3111</td>
<td>15.842</td>
</tr>
<tr>
<td>10</td>
<td>0.65</td>
<td>0.2333</td>
<td>1.2833</td>
<td>2.05</td>
<td>0.872</td>
</tr>
</tbody>
</table>
TABLA ANEX.1 Coordenadas del perfil aerodinámico NACA 2412

<table>
<thead>
<tr>
<th>Lado de Succión</th>
<th>Lado de presión</th>
</tr>
</thead>
<tbody>
<tr>
<td>x/c</td>
<td>y/c</td>
</tr>
<tr>
<td>0.0125</td>
<td>0.0215</td>
</tr>
<tr>
<td>0.0250</td>
<td>0.0299</td>
</tr>
<tr>
<td>0.0500</td>
<td>0.0413</td>
</tr>
<tr>
<td>0.0750</td>
<td>0.0496</td>
</tr>
<tr>
<td>0.1000</td>
<td>0.0563</td>
</tr>
<tr>
<td>0.1500</td>
<td>0.0661</td>
</tr>
<tr>
<td>0.2000</td>
<td>0.0726</td>
</tr>
<tr>
<td>0.2500</td>
<td>0.0767</td>
</tr>
<tr>
<td>0.3000</td>
<td>0.0780</td>
</tr>
<tr>
<td>0.4000</td>
<td>0.0788</td>
</tr>
<tr>
<td>0.5000</td>
<td>0.0724</td>
</tr>
<tr>
<td>0.6000</td>
<td>0.0636</td>
</tr>
<tr>
<td>0.7000</td>
<td>0.0518</td>
</tr>
<tr>
<td>0.8000</td>
<td>0.0375</td>
</tr>
<tr>
<td>0.9000</td>
<td>0.0208</td>
</tr>
<tr>
<td>0.9500</td>
<td>0.0114</td>
</tr>
<tr>
<td>1.0000</td>
<td>0.0013</td>
</tr>
</tbody>
</table>
Figura ANEX.1 Curvas polares del perfil NACA 2412, a) C_L vs C_D, b) C_L vs α, c) C_L/C_D vs α y d) C_D vs α
Tabla ANEX.2 Coordenadas del perfil aerodinámico NREL S822

<table>
<thead>
<tr>
<th>Lado de succión</th>
<th>Lado de presión</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>x/c</td>
<td>y/c</td>
</tr>
<tr>
<td>0.000138</td>
<td>0.001358</td>
</tr>
<tr>
<td>0.000651</td>
<td>0.003396</td>
</tr>
<tr>
<td>0.001760</td>
<td>0.006074</td>
</tr>
<tr>
<td>0.008599</td>
<td>0.015142</td>
</tr>
<tr>
<td>0.020310</td>
<td>0.024706</td>
</tr>
<tr>
<td>0.036592</td>
<td>0.034302</td>
</tr>
<tr>
<td>0.057423</td>
<td>0.043713</td>
</tr>
<tr>
<td>0.082528</td>
<td>0.052754</td>
</tr>
<tr>
<td>0.111706</td>
<td>0.061261</td>
</tr>
<tr>
<td>0.144635</td>
<td>0.069084</td>
</tr>
<tr>
<td>0.181021</td>
<td>0.076101</td>
</tr>
<tr>
<td>0.220471</td>
<td>0.082211</td>
</tr>
<tr>
<td>0.262594</td>
<td>0.087322</td>
</tr>
<tr>
<td>0.306932</td>
<td>0.091363</td>
</tr>
<tr>
<td>0.353012</td>
<td>0.094259</td>
</tr>
<tr>
<td>0.400324</td>
<td>0.095949</td>
</tr>
<tr>
<td>0.448320</td>
<td>0.096342</td>
</tr>
<tr>
<td>0.496467</td>
<td>0.095295</td>
</tr>
<tr>
<td>0.544321</td>
<td>0.092477</td>
</tr>
<tr>
<td>0.591971</td>
<td>0.087923</td>
</tr>
<tr>
<td>0.638946</td>
<td>0.081988</td>
</tr>
<tr>
<td>0.684771</td>
<td>0.074819</td>
</tr>
<tr>
<td>0.728946</td>
<td>0.066315</td>
</tr>
<tr>
<td>0.771742</td>
<td>0.056677</td>
</tr>
<tr>
<td>0.812782</td>
<td>0.046731</td>
</tr>
<tr>
<td>0.851444</td>
<td>0.037037</td>
</tr>
<tr>
<td>0.887037</td>
<td>0.028045</td>
</tr>
<tr>
<td>0.918825</td>
<td>0.020084</td>
</tr>
<tr>
<td>0.946046</td>
<td>0.013324</td>
</tr>
<tr>
<td>0.968133</td>
<td>0.007602</td>
</tr>
<tr>
<td>0.985048</td>
<td>0.003157</td>
</tr>
<tr>
<td>0.996089</td>
<td>0.000642</td>
</tr>
<tr>
<td>1.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
Figura ANEX.2 Curvas polares del perfil NREL S822, a) C_L vs C_D, b) C_L vs α, c) C_L/C_D vs α y d) C_D vs α